首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Category formation allows us to group perceptual objects into meaningful classes and is fundamental to cognition. Categories can be derived from similarity relationships of object features by using prototypes or multiple exemplars, or from abstract relationships of features and rules . A variety of brain areas have been implicated in categorization processes, but mechanistic insights on the single-cell and local-network level are still rare and limited to the matching of individual objects to categories . For directional categorization of tone steps, as in melody recognition , abstract relationships between sequential events (higher or lower in frequency) have to be formed. To explore the neuronal mechanisms of this categorical identification of step direction, we trained monkeys for more than two years on a contour-discrimination task with multiple tone sequences. In the auditory cortex of these highly trained monkeys, we identified two interrelated types of neuronal firing: Increased phasic responses to tones categorically represented the reward-predicting downward frequency steps and not upward steps; subsequently, slow modulations of tonic firing predicted the behavioral decisions of the monkeys, including errors. Our results on neuronal mechanisms of categorical stimulus identification and of decision making attribute a cognitive role to auditory cortex, in addition to its role in signal processing.  相似文献   

2.
Amblyopia is a cortically based visual disorder caused by disruption of vision during a critical early developmental period. It is often thought to be a largely intractable problem in adult patients because of a lack of neuronal plasticity after this critical period [1]; however, recent advances have suggested that plasticity is still present in the adult amblyopic visual cortex [2-6]. Here, we present data showing that repetitive transcranial magnetic stimulation (rTMS) of the visual cortex can temporarily improve contrast sensitivity in the amblyopic visual cortex. The results indicate continued plasticity of the amblyopic visual system in adulthood and open the way for a potential new therapeutic approach to the treatment of amblyopia.  相似文献   

3.
Moths and butterflies flying in search of mates risk detection by numerous aerial predators; under the cover of night, the greatest threat will often be from insectivorous bats. During such encounters, the toxic dogbane tiger moth, Cycnia tenera uses the received intensity, duration and emission pattern of the bat''s echolocation calls to determine when, and how many, defensive ultrasonic clicks to produce in return. These clicks, which constitute an acoustic startle response, act as warning signals against bats in flight. Using an integrated test of stimulus generalization and dishabituation, here we show that C. tenera is able to discriminate between the echolocation calls characteristic of a bat that has only just detected it versus those of a bat actively in pursuit of it. We also show that C. tenera habituates more profoundly to the former stimulus train (‘early attack’) than to the latter (‘late attack’), even though it was initially equally responsive to both stimuli. Matched sensory and behavioural data indicate that reduced responsiveness reflects habituation and is not merely attributable to sensory adaptation or motor fatigue. In search of mates in the face of bats, C. tenera''s ability to discriminate between attacking bats representing different levels of risk, and to habituate less so to those most dangerous, should function as an adaptive cost–benefit trade-off mechanism in nature.  相似文献   

4.
Ong RC  Stopfer M 《Chemical senses》2012,37(5):455-461
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain.  相似文献   

5.
6.
7.
8.
Cricket frogs (Acris crepitans) occupy a variety of acousticallydifferent habitats ranging from pine forest to open grassland.There is geographic variation in their calls and the tuningof their basilar papilla (BP) correlated with habitat. Here,we characterize the spectral content of environmental noisefrom two habitats, one a pine forest (Stengl) and one a grassland(Gill) habitat. We then used rounded exponential filter functionsbased on the mean tuning of auditory fibers in Stengl and Gillfemales to model the BP tuning characteristics of an averagefemale from the two cricket frog populations occupying thosehabitats to compare their ability to filter out environmentalnoise. Noise recordings were made at both sites from 1800 to2400 h on multiple nights throughout a breeding season (Marchthrough early August). Noise spectra were similar at both sites.Cross-correlation analyses of the sampled noise indicated thatnoise spectra were consistent throughout the night and variedlittle over the season other than during the month of May. Themodel auditory filter simulating an average Stengl female wassignificantly better than one simulating an average Gill femaleat filtering environmental noise at both sites. Previous workhad shown that cricket frog calls suffered greater attenuationand degradation in the Stengl site than the Gill site but thatthe male calls from Stengl frogs suffered less attenuation andless degradation than Gill calls during transmission throughboth habitats. These new results demonstrate that frogs fromthe more acoustically challenging Stengl habitat have enhancedboth the sender and receiver portions of their communicationsystem, evolving calls that transmit better and auditory filtersthat better eliminate noise.  相似文献   

9.
10.
Measurements of the thoracic temperature and recordings of the spike activity of the most sensitive auditory receptor (A1 cell) were made in Empyreuma pugione (Arctiidae, Ctenuchinae). The temperature range tested (19–36 °C) is relevant for the behavior and ecology of this species. Experiments were performed during the hours of maximal flying activity in the wild: sunrise and sunset. The thoracic temperature during rest reflects that of the surrounding air; there is an increase of 3–4 °C immediately after ceasing free flying in the laboratory. The spike activity of the tympanic organ was recorded with a stainless-steelhook electrode placed beneath the tympanic nerve in the mesothorax. The A1 cell activity was studied without acoustic stimulation (spontaneous) and in response to 35-kHz acoustic pulses of 20, 40, or 100 ms duration. At all of these durations A1 cell response to saturating stimulus was analysed, while with 40-ms pulses different stimulus intensities were used (20–90 dB SPL in 10-dB steps). The number of action potentials per pulse, mean spike rate, maximal instantaneous discharge, and latency period depend strongly on air temperature, while the variation coefficients of the interspike intervals during the responses were not temperature dependent and vary non-monotonically with stimulus intensity. During responses to a saturating stimulus, the stimulus duration does not affect the activation energy, calculated from an Arrhenius plot, of different physiological features. Adaptation, studied in the responses to 100-ms pulses, is also temperature dependent. This phenomenon has two components, each of which shows different activation energies, suggesting a different membrane origin. High stimulus intensity (90 dB SPL) significantly affects the activation energy of the action potentials and mean spike rate, while the activation energy, of the maximal instantaneous discharge and latency period do not show this strong dependency. The spontaneous A1 cell spike rate varies with temperature, as does the value of the mode of the relative frequency distribution of the interspike interval. The activation energy of the spike rates measured at A1 cell responses to saturating stimuli is in good agreement with that described in amphibian innerear hair cells. It is suggested that this moth auditory receptor cell also has mechanosensitive protein channels.Abbreviations AP/p action potentials per pulse - AP/s action potentials per second - CI confidence interval - E a activation energy - ISI interspike interval - SD standard deviation - VC variation coefficient  相似文献   

11.
12.
Courtship displays are often energetically and temporally costly as well as highly conspicuous to predators. Selection should therefore favour signalling tactics that minimize courtship costs while maintaining or increasing signal attractiveness. In fiddler crabs, males court females by waving their one greatly enlarged claw in a highly conspicuous and costly display. Here, we investigate whether courting males adjust their wave rate, and therefore the cost of courtship, to the current level of competition. We show that display rate increases as competition increases and that when competition is removed, males reduce their display rate by 30 per cent. These results suggest that male fiddler crabs actively reduce the cost of courtship by adjusting their wave rate in response to the immediate level of competition.  相似文献   

13.
14.
15.
Plants ‘forage’ for light in plant canopies using a variety of photosensory systems. Far-red radiation (FR) reflected by neighbours is an early signal of competition that elicits anticipatory shade-avoidance responses. In Arabidopsis and cucumber, perception of reflected FR requires phytochrome B. Horizontal blue (B) light gradients also guide plant shoots to canopy gaps in patchy vegetation, and these B light signals are perceived by specific photoreceptors. When plants are shaded by neighbours they undergo extensive reprogramming of their morphological development. Although phytochromes and B light receptors are certainly involved in these responses to shading, other sensory systems probably play important roles in the field. Recent studies of plant–plant signalling are unveiling a paradigm of sensory diversity and sophistication, which has important implications for understanding the functioning of plant populations and communities.  相似文献   

16.
17.
18.
The peripheral auditory organ, the cochlea, acts as a spectral analyzer resolving the frequency components of sound. During development the cochlea first responds to loud low-frequency sounds, and only gradually acquires the adult pattern of increased sensitivity and an expanded high-frequency range. This evolution of function may result in part from the gradual maturation of hair cell properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号