首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative distributions of tree and crop roots in agroforestry associations may affect the degree of complementarity which can be achieved in their capture of below ground resources. Trees which root more deeply than crops may intercept leaching nitrogen and thus improve nitrogen use efficiency. This hypothesis was tested by injection of small doses of (15NH4)2SO4 at 21.8 atom% 15N at different soil depths within established hedgerow intercropping systems on an Ultisol in Lampung, Indonesia. In the top 10 cm of soil in intercrops of maize and trees, root length density (Lrv) of maize was greater than that of Gliricidia sepium trees, which had greater Lrv in this topsoil layer than Peltophorum dasyrrachis trees. Peltophorum trees had a greater proportion of their roots in deeper soil layers than Gliricidia or maize. These vertical root distributions were related to the pattern of recovery of 15N placed at different soil depths; more 15N was recovered by maize and Gliricidia from placements at 5 cm depth than from placements at 45 or 65 cm depth. Peltophorum recovered similar amounts of 15N from placements at each of these depths, and hence had a deeper N uptake distribution than Gliricidiaor maize. Differences in tree Lrv across the cropping alley were comparatively small, and there was no significant difference (P<0.05) in the uptake of 15N placed in topsoil at different distances from hedgerows. A greater proportion of the 15N recovered by maize was found in grain following 15N placement at 45 cm or 65 cm depth than following placement at 5 cm depth, reflecting the later arrival of maize roots in these deeper soil layers. Thus trees have an important role in preventing N leaching from subsoil during early crop establishment, although they themselves showed a lag phase in 15N uptake after pruning. Residual 15N enrichment in soil was strongly related to application depth even 406 days after 15N placement, demonstrating the validity of this approach to mapping root activity distributions.  相似文献   

2.
Livesley  S.J.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》2000,227(1-2):149-161
Complementarity in the distribution of tree and crop root systems is important to minimise competition for resources whilst maximising resource use in agroforestry systems. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare the distribution and dynamics of root length and biomass of a 3-year-old Grevillea robusta A. Cunn. ex R. Br. (grevillea) tree row and a 3-year-old Senna spectabilis DC. (senna) hedgerow grown with Zea mays L. (maize). Tree roots were sampled to a 300 cm depth and 525 cm distance from the tree rows, both before and after maize cropping. Maize roots were sampled at two distances from the tree rows (75–150 cm and 450–525 cm) to a maximum depth of 180 cm, at three developmental stages. The mean root length density (Lrv) of the trees in the upper 15 cm was 0.55 cm cm−3 for grevillea and 1.44 cm cm−3 for senna, at the start of the cropping season. The Lrv of senna decreased at every depth during the cropping season, whereas the Lrv of grevillea only decreased in the crop rooting zone. The fine root length of the trees decreased by about 35% for grevillea and 65% for senna, because of maize competition, manual weeding, seasonal senescence or pruning regime (senna). At anthesis, the Lrv of maize in the upper 15 cm was between 0.8 and 1.5 cm cm−3. Maize root length decreased with greater proximity to the tree rows, potentially reducing its ability to compete for soil resources. However, the specific root length (m g−1) of maize was about twice that of the trees, so may have had a competitive uptake advantage even when tree root length was greater. Differences in maize fine root length and biomass suggest that competition for soil resources and hence fine root length may have been more important for maize grown with senna than grevillea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Tree root systems may improve soil fertility through carbon inputs, uptake of leachable nutrients and maintenance of soil biomass, but can at the same time reduce crop yields by competition for water and nutrients. Quantitative information about the positive and negative effects of tree roots and their changes in space and time are necessary for the optimization of agroforestry associations. An alley cropping experiment was layed out as a randomized complete block design on a Plinthic Lixisol/Ferralic Cambisol with Gliricidia sepium hedgerows at 5 m distance, including a sole cropping control. The development of root systems was monitored by sequential soil coring (eight samplings) during one year, with maize and groundnut as crops. Additional information is presented from a single sampling for rice during the foregoing year. Pronounced fluctuations of live root length density indicated an important variability in the nutrient and water uptake capacity of the vegetation. At low total root length density, the hedgerows affected the root development in the agroforestry plots directly by the presence of their root systems. At high root length density, they affected root development mainly by improving crop root growth and influencing the composition of the spontaneous vegetation. The root length density of the hedgerows was too low to compete with the crops for soil resources. The hedgerows tended to increase root length densities in the subsoil when few roots were present, thus possibly reducing the risk of nutrient leaching. However, the length density of the perennial root systems decreased during the cropping season, presumably as an effect of repeated pruning, and attained minimum values almost at the same time as the crops. Trees with denser root systems which are less frequently pruned may be more efficient in achieving closer nutrient cycles, though at the cost of higher root competition with crops.  相似文献   

4.
Smith  D.M.  Jackson  N.A.  Roberts  J.M.  Ong  C.K. 《Plant and Soil》1999,211(2):191-205
Limited knowledge of root distributions in agroforestry systems has resulted in assumptions that various tree species are more suited to agroforestry than others, because they are presumed to have few superficial lateral roots. This assumption was tested for Grevillea robusta when grown with maize (Zea mays) in an agroforestry system in a semi-arid region of Kenya. At a site with a shallow soil, root lengths of both species between the soil surface and bedrock were quantified by soil coring, at intervals over four cropping seasons, in plots containing sole stands and mixtures of the trees and crop; the trees were 4–6 years old and they were severely pruned before the third season. Profiles of soil water content were measured using a neutron probe. Prior to pruning of the trees, recharge of soil water below the deepest maize roots did not occur, resulting in significant (P<0.05) suppression of maize root lengths and downward root growth. Maximum root length densities for both species occurred at the top of the soil profile, reaching 1.1–1.7 cm cm-3 for G. robusta, but only 0.5 cm cm-3 for maize grown with trees. Root populations in mixed plots were dominated by G. robusta at all times, all depths and all distances from trees and maize and, thus, there was no spatial separation of the rooting zones of the trees and crop. Competition between G. robusta and maize for soil water stored near the surface was unavoidable, although pruning reduced its impact; complementary use of water by the trees and crop would only have been possible if alternative sources of water were available. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The development of alley cropping systems is based on the assumption that leguminous trees planted in hedgerows influence the yield of associated crops favourably by means of the additional nutrient pool applied to the soil through tree prunings. An on-station field study (split-plot design in a randomised block design) was conducted on an Eutric Cambisol under humid premontane climate conditions in Costa Rica in order to evaluate the ability of Erythrina poeppigiana, Calliandra calothyrsus and Gliricidia sepium to increase bean (Phaseolus vulgaris) yields compared to sole cropping. Soil tillage was applied as a sub-treatment in order to evaluate if soil preparation would additionally alter soil fertility and bean yield. After seven years with pruning twice per year, the size of both the total N and P pool in the pruned tree material was about three times higher for Erythrina prunings than for Calliandra and Gliricidia prunings. Two and five weeks after mulch application 50–150% higher inorganic N pools were measured in the soil from Erythrina plots, the bean shoot biomass at harvest was increased by 65–100% and the bean yield was 15–50% higher than in plots with beans alone. Hence, of the three tree species, Erythrina was the best choice for alley cropping systems in the pedoclimatic environment studied. Soil tillage reduced bean yield, soil organic matter, total soil N content and soil microbial biomass N in the top soil and is not recommended for similar soils in humid premontane climates.  相似文献   

6.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   

7.
Cover crop roots and shoots release carbon (C) and nitrogen (N) compounds in situ during their decomposition. Depending upon the season, these C and N compounds may be sequestered, the C may be respired or the N may be leached below the root zone. A field study was established to identify the contributions of cover crop root and shoot N to different regions within aggregates in the Ap horizon of a Kalamazoo loam soil. Fall-planted rye plants (Secale cerealeL.) were labeled the next May with foliar applications of solutions containing 99% atom (15NH4)2SO4. Isotopic enrichment of soil aggregates ranging from 2.0 to 4.0, 4.0–6.3 and 6.3–9.5 mm across was determined following plant residue applications. Concentric layers of aggregates were removed from each aggregate by newly designed meso soil aggregate erosion (SAE) chambers. Non-uniform distributions of total N and recently derived rye N in soil macroaggregates, across time, suggested that the formations and functions of macroaggregates are very dynamics processes and soil aggregates influence where N is deposited. Early in the season, more 15N migrated to the interior regions of the smallest aggregates, 2–4 mm across, but it was limited to only surfaces and transitional regions of the larger aggregates, 6.3–9.3 mm across. Exterior layers of aggregates between 6.0 and 9.5 mm retained 1.6% of the Nderived from roots in July 1999, which was three times more than their interior regions. This was slightly greater than the % Nderived from shoot. One month later, as the maize root absorption of N increased rapidly, % Nderived from roots and % Nderived from shoot were nearly equal in exterior layers and interior regions of soil aggregates. This equilibrium distribution may have been from either greater diffusion of N within the aggregates and/or maize root removal form aggregate exteriors. Results supported that most of roots grew preferentially around surfaces of soil aggregates rather than through aggregates. Cover crop roots contributed as much N as cover crop shoots to the total soil N pool. Subsequent crops use N from the most easily accessible zones of soil structure, which are surfaces of larger soil aggregates. Therefore maintaining active plant roots and aggregated soil structure in the soil enhances N sequestration and maximize soil N availability. These studies suggest that the rapid and perhaps bulk flow of soil N solutions may bypass many of the central regions of soil aggregates, resulting in greater leaching losses.  相似文献   

8.
Population densities of mycorrhizal fungal propagules in a western Kentucky field highly productive for soybean were measured by bioassay throughout a soybean production season. The primary experimental variables were crop rotation (soybeans in 1985, then 2 years in corn, milo, fescue, or soybean, then soybean in 1988 on all plots when populations of propagules were determined) and soil fumigation with 67% methyl bromide/33% chloropicrin. Of the 20 species in three genera found, Glomus predominated both in terms of number of species and population densities. Most species of Glomus occurred at higher population densities in rotated plots than in continuous soybean plots. In continuous soybean plots, species of Gigaspora made up a much higher proportion of the mycorrhizal fungal community than in rotated crops. Species richness and diversity were lower, and dominance and equitability higher, in nonfumigated continuous soybean plots than in rotated plots early in the season, but the differences were not present at the end of the season. Soil fumigation killed most propagules in the upper 15 cm of soil, but after production of a crop of soybeans, populations of total propagules and most Glomus spp. recovered to prefumigation densities. However, Gigaspora margarita and Gigaspora gigantea did not recover similarly. Fumigation reduced species richness and diversity and increased dominance, but the effects were ameliorated by the end of the season. Colonization of roots was low during vegetative growth but increased rapidly after the onset of soybean reproduction. There was no evidence for mutualism during the early half of the season, perhaps due to high soil P and low dependency of soybean. Fumigation increased soybean yields. A stable mycorrhizal fungal community appeared to become established with continuous soybean production, and both crop rotation and soil fumigation disrupted the community.  相似文献   

9.
R. Mulia  C. Dupraz 《Plant and Soil》2006,281(1-2):71-85
The spatial distribution of fine roots of two deciduous tree species was investigated in contrasting growing conditions in southern France. Hybrid walnut trees (Juglans regia×nigra cv. NG23) and hybrid poplars (Populus euramericana cv. I214) were both cultivated with or without annual winter intercrops for 10 years on deep alluvial soils. Soil samples for measuring the fine root distribution of both trees and crops were obtained by soil coring down to 3-m depth at several distances and orientations from the tree trunk. The distribution of live fine roots from walnut and poplar trees was patchy and sometimes unexpected. In the tree-only stands, fine root profiles followed the expected pattern, as fine root density decreased with increasing depth and distance from the tree trunk. However, many fine root profiles under intercropped trees were uniform with depth, and some inverse profiles were observed. These distributions may result from a high degree of plasticity of tree root systems to sense and adapt to fluctuating and heterogeneous soil conditions. The distortion of the tree root system was more pronounced for the walnut trees that only partially explored the soil volume: in the tree-only stand, the walnut rooting pattern was very superficial, but in the intercropped stand walnut trees developed a deep and dense fine root network below the crop rooting zone. The larger poplars explored the whole available soil volume, but the intercrop significantly displaced the root density from the topsoil to layers below 1 m depth. Most tree root growth models assume a decreasing fine root density with depth and distance from the tree stem. These models would not predict correctly tree–tree and tree–understorey competition for water and nutrients in 3D heterogeneous soil conditions that prevail under low-density tree stands. To account for the integrated response of tree root systems to such transient gradients in soils, we need a dynamic model that would allow for both genotypic plasticity and transient environmental local soil conditions.  相似文献   

10.
The effect of tree row species on the distribution of soil inorganic N and the biomass growth and N uptake of trees and crops was investigated beneath a Grevillea robustaA. Cunn. ex R. Br. (grevillea) tree row and Senna spectabilisDC. (senna) hedgerow grown with Zea mays L. (maize) and a sole maize crop, during one cropping season. The hypothesis was that a tree with a large nutrient uptake would have a greater competitive effect upon coexisting plants than a tree that takes up less and internally cycles nutrients. The field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya. Soil nitrate and ammonium were measured to 300 cm depth and 525 cm distance from the tree rows, before and after maize cropping. Ammonium concentrations were small and did not change significantly during the cropping season. There was > 8 mg nitrate kg–1 in the upper 60 cm and at 90–180 cm depth at the start of the season, except within 300 cm of the senna hedgerow where concentrations were smaller. During the season, nitrate in the grevillea-maize system only decreased in the upper 60 cm, whereas nitrate decreased at almost every depth and distance from the senna hedgerow. Inorganic N (nitrate plus ammonium) decreased by 94 kg ha–1 in the senna-maize system and 33 kg ha–1 in the grevillea-maize system.The aboveground N content of the trees increased by 23 kg ha–1 for grevillea and 39 kg ha–1 for senna. Nitrogen uptake by maize was 85 kg ha–1 when grown with grevillea and 65 kg ha–1 with senna. Assuming a mineralisation input of 50 kg N ha–1season–1, the decrease in inorganic soil N approximately equalled plant N uptake in the grevillea-maize system, but exceeded that in the senna-maize system. Pruning and litter fall removed about 14 kg N ha–1 a–1 from grevillea, and > 75 kg N ha–1 a–1 from senna. The removal of pruned material from an agroforestry system may lead to nutrient mining and a decline in productivity.  相似文献   

11.
Water use patterns of two species of strangler fig, Ficus pertusa and F. trigonata, growing in a Venezuelan palm savanna were contrasted in terms of growth phase (epiphyte and tree) and season (dry and wet). The study was motivated by the question of how C3 hemiepiphytes accommodate the marked change in rooting environment associated with a life history of epiphytic establishment followed by substantial root development in the soil. During the dry season, stomatal opening in epiphytic plants occurred only during the early morning, maximum stomatal conductances were 5 to 10-fold lower, and midday leaf water potentials were 0.5–0.8 MPa higher (less negative) than in conspecific trees. Watering epiphytes of F. pertusa during the dry season led to stomatal conductances comparable to those exhibited by conspecific trees, but midday leaf water potentials were unchanged. During the rainy season, epiphytes had lower stomatal conductances than conspecific trees, but leaf water potentials were similar between the two growth phases. There were no differences in 13C between the two growth phases for leaves produced in either season. Substrate water availability differed between growth phases; tree roots extended down to the permanent water table, while roots of epiphytic plants were restricted to material accumulated behind the persistent leaf bases of their host palm tree, Copernicia tectorum. Epiphytic substrate moisture contents were variable during both seasons, indicating both the availability of some moisture during the dry season and the possibility of intermittent depletion during the rainy season. Epiphytic strangler figs appear to rely on a combination of strong stomatal control, maintenance of high leaf water potentials, and perhaps some degree of stem water storage to cope with the fluctuating water regime of the epiphytic environment.  相似文献   

12.
陈建文  史建伟  王孟本 《生态学报》2016,36(13):4021-4033
采用微根管技术(Minirhizotron technique)对晋西北黄土丘陵区幼林(5a)与成林(30a)柠条(Caragana korshinskii)细根动态进行了为期5a的原位观测。基于2008—2011年的观测数据,对两林龄柠条不同土层细根现存量动态进行了比较研究,并探讨了两林龄柠条细根现存量与不同年际间水热条件的差异。结果表明:在0—100 cm土壤剖面,柠条幼林与成林细根现存量的峰值均位于50 cm土层以下,成林细根现存量峰值位于50—60 cm土层,幼林细根现存量峰值则从观测期初的90—100 cm土层到观测期末的80—90 cm土层。各观测年内,两林地各土层每年生长季初(3—4月)会出现细根现存量的积累;30—100 cm土层中,幼林细根最大现存量出现时间均较成林早,而生长季末(9—10月),所有土层幼林细根现存量下降均较成林快。柠条细根现存量的垂直分布主要受土壤水分影响,季节变化受温度的影响更大,年际间细根现存量的差异主要是由于年降雨量变化;幼林细根现存量受降水、土壤水分、土壤温度等的影响比成林大。  相似文献   

13.
We have limited understanding of architecture and morphology of fine root systems in large woody trees. This study investigated architecture, morphology, and biomass of different fine root branch orders of two temperate tree species from Northeastern China—Larix gmelinii Rupr and Fraxinus mandshurica Rupr —by sampling up to five fine root branch orders three times during the 2003 growing season from two soil depths (i.e., 0–10 and.10–20 cm). Branching ratio (R b) differed with the level of branching: R b values from the fifth to the second order of branching were approximately three in both species, but markedly higher for the first two orders of branching, reaching a value of 10.4 for L. gmelinii and 18.6 for F. mandshurica. Fine root diameter, length, SRL and root length density not only had systematic changes with root order, but also varied significantly with season and soil depth. Total biomass per order did not change systematically with branch order. Compared to the second, third and/or fourth order, the first order roots exhibited higher biomass throughout the growing season and soil depths, a pattern related to consistently higher R b values for the first two orders of branching than the other levels of branching. Moreover, the differences in architecture and morphology across order, season, and soil depth between the two species were consistent with the morphological disparity between gymnosperms and angiosperms reported previously. The results of this study suggest that root architecture and morphology, especially those of the first order roots, should be important for understanding the complexity and multi-functionality of tree fine roots with respect to root nutrient and water uptake, and fine root dynamics in forest ecosystems.  相似文献   

14.
The functioning of trees as a safety-net for capturing nutrients leached beyond the reach of crop roots was evaluated by investigating changes in exchangeable cations (Ca, Mg, and K) and pH in a wide range of medium to long term alley cropping trials in the derived savanna of West Africa, compared to no-tree control plots. Topsoil Ca content, effective cation exchange capacity, and pH were substantially higher under Senna siamea than under Leucaena leucocephala, Gliricidia sepium, or the no-tree control plots in sites with a Bt horizon rich in exchangeable Ca. This was shown to be largely related to the recovery of Ca from the subsoil under Senna trees. The increase of the Ca content of the topsoil under Senna relative to the no-tree control treatment was related to the total amount of dry matter applied since trial establishment. The lack of increase in Ca accumulation under the other species was related to potential recovery of Ca from the topsoil itself and/or substantial Ca leaching. The accumulation of Ca in the topsoil under Senna had a marked effect on the topsoil pH, the latter increasing significantly compared with the Leucaena, Gliridia, and no-tree control treatments. In conclusion, the current work shows that the functioning of the often hypothesized ‘safety-net’ of trees in a cropping system depends on (i) the tree species and on (ii) the presence of a subsoil of suitable quality, i.e., clay enriched and with high Ca saturation.  相似文献   

15.
Pruning of hedgerow trees is an important management practice for the successful establishment of an alley cropping system. Although pruning affects biomass production, only meager evidence of this management on distribution of nutrients among the different plant organs after tree regrowth is available. This study examined the effect of pruning on the distribution and use efficiency of N and P in a N2 fixing leguminous tree species, Gliricidia sepium, and two non-N2 fixing leguminous tree species, Senna siamea and S. spectabilis, grown in a field on an Alfisol (low in P) at Fashola (Guinea Savanna Zone), Southwestern Nigeria. Four P rates, 0, 20, 40 and 80 kg P ha–1 as single superphosphate were used and management treatments included pruned versus unpruned plants. The 15N isotope dilution technique was used to measure N2 fixation in G. sepium. Partitioning of total P among different plant organs was influenced by plant species and pruning management, but was not affected by P application rates. The distribution of total P in the various plant organs followed that of dry matter yield while N partitioning had a different pattern. Pruned plants distributed about 118% more total P to branches and had a higher physiological P use efficiency (PPUE) than unpruned plants. Leaves were the biggest sink for total N and N allocation in the other plant organs was influenced by plant species and pruning management, G. sepium had relatively more of its total N and P partitioned into roots (about double that of the non-N2 fixing trees) but had a lower PPUE. Unpruned and pruned G. sepium derived 35 and 54% respectively of their total N from atmospheric N2, with about 54% of the fixed N2 being allocated to leaves and roots. Results showed that N and P pools turned over in the branches during plant regrowth after pruning but the causative factors associated with this phenomenon were not clear.  相似文献   

16.
Prunings of Calliandra calothyrsus, Grevillea robusta, Leucaena diversifolia and farm yard manure were applied each cropping season at 3 and 6 t dry matter ha−1 to an Oxisol in Burundi. The field plots also received basal applications of nitrogen (N), phosphorus (P) and potassium (K). Application of the tree prunings or farm yard manure decreased the concentration of monomeric inorganic aluminium (Al) in soil solution from 2.92 mg Al dm−3 in the control plots to 0.75 mg Al dm−3 in the plots receiving 6 t ha−1 Calliandra prunings. The other organic materials also decreased the concentration of monomeric inorganic aluminium in the soil solution. The lowered Al concentration led to a corresponding decrease in the percentage Al saturation of the 0–10 cm soil layer from 80% to 68%. Grain yields of maize and beans were strongly inversely related to the percentage Al saturation of the soil. This confirms that soil acidity was the main constraint to maize and beans production. The yield improvement was mainly attributed to the ameliorating effects of the organic matter application on Al toxicity. The nutrient content had less effect presumably because of fertilizer use. In the best treatments, the yield of maize increased from 0.9 to 2.2 t ha−1 and the corresponding beans yield increased from 0.2 to 1.2 t ha−1. A C Borstlap Section editor  相似文献   

17.
Schmid I  Kazda M 《Oecologia》2005,144(1):25-31
Distribution of small roots (diameter between 2 mm and 5 mm) was studied in 19 pits with a total of 72 m2 trench profile walls in pure stands of Fagus sylvatica and Picea abies. Root positions within the walls were marked and transformed into x-coordinates and y-coordinates. In a GIS-based evaluation, zones of potential influence around each root were calculated. The total potential influence produced isoline maps of relative root influence zones, thus indicating small root clustering. The questions studied were (1) whether there were marked clusters of small roots in the soil and (2) whether trees surrounding the pit (defined as tree density) correlate with the root abundance and distribution on the trench profile walls. Small roots of both species showed maximum abundance in the top 20 cm of the soil, where pronounced root clusters occurred next to areas with only low root accumulation. The area of root clusters did not differ significantly between the two stands. Weighted clumping, WC, calculated as a product of root class, and its area was used as an index of root clustering, which again did not differ between beech and spruce stands. However, evaluations on a single root level showed that beech achieved the same degree of clustering with lower number of roots. Regardless of soil properties related to root clusters, a significantly higher clustering acquired per root for beech than for spruce suggests beech to be more efficient in belowground acquisition of space. Because none of the parameters describing root clustering were correlated with tree density around the investigated soil profiles, clusters of small roots are inherently present within the tree stands.  相似文献   

18.
Canopy CO2-exchange rates (CER), air temperatures, and dew points were measured throughout ten days during the 1987 growing season for cotton (Gossypium hirsutum L.), grain sorghum [Sorghum bicolor (L) Moench], and five soybean [Glycine max (L) Merr.] cultivars, and throughout seven days in 1988, on maize (Zea maize L.). The objective was to determine if the decline in CER per unit light during the afternoon is associated with a vapor pressure deficit (VPD) increase. Some of the soybean and maize plots were kept as dry as possible. A VPD term significantly contributed (P0.05) to a canopy CER regression model in 54 of 80 data sets in 1987. Grain sorghum was less sensitive than the well-watered soybean genotypes to an increasing VPD (P0.05) on three of the ten measurement days and less sensitive than cotton (P0.05) on only one day. Cotton demonstrated less VPD sensitivity than soybean (P0.05) on one day. The moisture stressed soybean plots showed a greater CER sensitivity to VPD (P0.05) than the well-watered soybean plots. In 1988, the frequently irrigated maize plots were less sensitive to VPD (P0.05) than the rain-fed plots early in the season, before the rain-fed plots were excessively damaged by moisture stress. These results indicate that the afternoon declines in canopy CER found in a number of different species are associated with increases in the VPD; recent work of others suggests that this may be due to partial stomatal closure.Abbreviations CER carbon dioxide exchange rate - VPD vapor pressure deficit - PPFD photosynthetic photon flux density - DAP days after planning  相似文献   

19.
Vanlauwe  B.  Sanginga  N  Merckx  R. 《Plant and Soil》2001,231(2):201-210
Crop and tree roots are crucial in the nutrient recycling hypotheses related to alley cropping systems. At the same time, they are the least understood components of these systems. The biomass, total N content and urea-derived N content of the Senna and maize roots in a Senna-maize alley cropping system were followed for a period of 1.5 years (1 maize-cowpea rotation followed by 1 maize season) to a depth of 90 cm, after the application of 15N labeled urea. The highest maize root biomass was found in the 0–10 cm layer and this biomass peaked at 38 and 67 days after planting the 1994 maize (DAP) between the maize rows (112 kg ha–1, on average) and at 38, 67 and 107 DAP under the maize plants (4101 kg ha–1, on average). Almost no maize roots were found below 60 cm at any sampling date. Senna root biomass decreased with time in all soil layers (from 512 to 68 kg ha–1 for the 0–10 cm layer between 0 and 480 DAP). Below 10 cm, at least 62% of the total root biomass consisted of Senna roots and this value increased to 87% between 60 and 90 cm. Although these observations support the existence of a Senna root `safety net' between the alleys which could reduce nutrient leaching losses, the depth of such a net may be limited as the root biomass of the Senna trees in the 60–90 cm layer was below 100 kg ha–1, equivalent to a root length density of only < 0.05 cm cm–3. The proportion of maize root N derived from the applied urea (%Ndfu) decreased significantly with time (from 21% at 21 DAP to 8% at 107 DAP), while %Ndfu of the maize roots at the second harvest (480 DAP) was only 0.6%. The %Ndfu of the Senna roots never exceeded 4% at any depth or sampling time, but decreased less rapidly compared to the %Ndfu of the maize roots. The higher %Ndfu of the maize roots indicates that maize is more efficient in retrieving urea-derived N. The differences in dynamics of the %Ndfu also indicate that the turnover of N through the maize roots is much faster than the turnover of N through the Senna roots. The recovery of applied urea-N by the maize roots was highest in the top 0–10 cm of soil and never exceeded 0.4% (at 38 DAP) between the rows and 7.1% (at 67 DAP) under the rows. Total urea N recovery by the maize roots increased from 1.8 to 3.2% during the 1994 maize season, while the Senna roots never recovered more than 0.8% of the applied urea-N at any time during the experimental period. These values are low and signify that the roots of both plants will only marginally affect the total recovery of the applied urea-N. Measurement of the dynamics of the biomass and N content of the maize and Senna roots helps to explain the observed recovery of applied urea-N in the aboveground compartments of the alley cropping system.  相似文献   

20.
Tang  C.  Robson  A. D. 《Plant and Soil》2000,225(1-2):11-20
The application of herbicides has induced symptoms of nutrient deficiencies under some circumstances. This glasshouse study examined the effect of chlorsulfuron on the uptake and utilization of copper (Cu) in four cultivars of wheat plants (Triticum aestivum L. cvs. Kulin, Cranbrook, Gamenya and Bodallin) on a Cu-responsive soil. Application of chlorsulfuron depressed the concentration of Cu in wheat plants receiving either inadequate or adequate Cu. In plants with inadequate Cu supply, chlorsulfuron increased the severity of Cu deficiency. Shoot weight was markedly decreased by chlorsulfuron at all levels of Cu, through decreasing the number of tillers and the elongation of leaves. This decreased growth of shoots occurred prior to the effect on Cu concentration in tissues. The retranslocation of Cu in old tissues over time was unaffected by chlorsulfuron. In all wheat cultivars, the decreased growth of shoots were correlated with the concentration of Cu in the youngest fully emerged leaf blade with critical levels of 1.6−1.7 at day 25 and 0.9−1.0 μg g−1 d. wt. at day 60. The application of chlorsulfuron tended to increase the critical level at day 25 but not at day 60. In addition, Kulin seems to be most, and Cranbrook least, sensitive to chlorsulfuron. This sensitivity was associated with the sensitivity of the cultivars to Cu deficiency. It is suggested that chlorsulfuron application induces Cu deficiency in wheat plants mainly due to effects on the uptake of Cu. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号