首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of an estrogen affinity adsorbent containing a disulfide linkage between the steroid and stationary matrix permitted facile purification of high affinity estrogen binding proteins. Following affinity chromatography of either antibody directed against estrone 17-carboxymethyloxime — bovine serum albumin or immature calf uterine cytoplasmic estrogen receptor proteins, the specifically bound protein was recovered by incubating the adsorbent with 2-mercaptoethanol. Crude antibody and uterine cytosol was prepared for affinity chromatography in buffer containing 10?3 to 10?2M cystamine (S-S) to block SH-containing proteins, in order to protect the adsorbent against protein-mediated S-S ag SH exchange. Cystamine was found to markedly stabilize crude cytosol receptor protein by 200–300% compared with preparations obtained under ordinary conditions. Disulfide affinity adsorbents are versatile in that they can be used either under conventional conditions of specific protein recovery, or with 2-mercaptoethanol which removes the ligand and bound protein from the stationary matrix quantitatively.  相似文献   

2.
Several biotinyl estradiol derivatives have been prepared by coupling estradiol 7 alpha-carboxylic acid to biotin via different linear linkers. All these compounds exhibit a high affinity for the estrogen receptor as determined by competitive binding assays against [3H]estradiol. These compounds also displaced the dye 4-hydroxyazobenzene-2'-carboxylic acid from the biotin-binding sites of avidin free or immobilized on agarose. It was demonstrated that only the derivatives bearing a long spacer chain (greater than 42 A greater than) between estradiol and biotin were able to bind receptor and avidin simultaneously, suggesting some steric hindrance. The biotin-avidin system has been investigated for the purification of the cytosoluble "nontransformed" estrogen receptor stabilized by sodium molybdate. The method relies on: 1) high biohormonal affinity of receptor for biotinyl estradiol derivative; 2) the specific selection by avidin-agarose column of biotinyl estradiol-receptor complexes; and 3) the biohormonal elution step by an excess of radioactive estradiol. Starting from unfractionated cytosol containing molybdate-stabilized nontransformed 8S estrogen receptor with estradiol 7 alpha-(CH2)10-CO-NH-(CH2)2-O-(CH2)2-O-(CH2)2-NH-CO-(CH2)3-NH-biotin, preliminary experiments using avidin-agarose chromatography and then a specific elution step by exchange with free [3H]estradiol, allowed a 500-1,500-fold purification. Further purification of estrogen receptor was obtained by ion exchange chromatography through a DEAE-Sephacel column and led to a congruent to 20% pure protein, assuming one binding site/65,000-Da unit. The hydrodynamic parameters of the purified receptor were essentially identical to those of molybdate-stabilized nontransformed receptor present in crude cytosol. The advantages of this double biotinyl steroid derivative-avidin chromatographic technique over more conventional affinity procedures are discussed and make it applicable to the purification of minute amounts of steroid receptors in a wide variety of tissues.  相似文献   

3.
4.
5.
Z Elazar  G Siegel    S Fuchs 《The EMBO journal》1989,8(8):2353-2357
The solubilized D2-dopamine receptor from bovine striatum exhibits high and low affinity states for dopaminergic agonists. Guanine nucleotides and pertussis toxin convert the solubilized receptor from a high affinity state to a low one. A D2-receptor preparation partially purified by affinity chromatography on a haloperidol adsorbent, exhibited agonist-stimulated GTPase activity. [32P]ADP-ribosylation by pertussis toxin of this receptor preparation resulted in the specific labeling of two protein bands corresponding to mol. wts of 39 and 41 kd, in SDS-PAGE. Association of these G-proteins with the receptor was specifically inhibited by Gpp(NH)p. Immunoblot analysis of these G-proteins indicated that the 41- and 39-kd protein bands are analogous to brain Gi and Go respectively. These experiments demonstrate that two distinct pertussis toxin-sensitive G-proteins are functionally associated with bovine striatum D2-dopamine receptor.  相似文献   

6.
In addition to the classical estrogen receptor, chick oviduct cytosol contains a sex steroid binding component (SSB) with specificity for steroidal estrogens, androgens and progestins. We have optimized the measurement of SSB and have further characterized this protein. It was possible to quantitate [3H]estradiol binding to SSB by performing the measurements in the presence of excess diethylstilbestrol, which saturates the estrogen receptor and does not bind to SSB, and by using excess progesterone to determine nonspecific binding. Since SSB appears to be quite unstable with rapid hormone dissociation kinetics, we determined that short incubation times (usually 2 h) at 0 degrees C with 20-30% glycerol in the buffer gave optimal SSB measurements. The affinity of SSB for estradiol (Kd = 20 nM) is about 5% that of the estrogen receptor. In addition to estradiol, several androgens and progestins bind to SSB. However, the nonsteroidal antiestrogen, H1285 does not bind to SSB even though it binds well to the avian estrogen receptor. The tissue content of SSB is about 15-fold greater than for estrogen receptor and is stimulated by estrogen treatment. Whereas labeled SSB cannot be readily resolved by ion-exchange chromatography due to rapid dissociation of hormone from SSB, post-labeling experiments yield binding activity eluting with 0.2 M KCl indicating that SSB is an acidic protein having a chromatography behavior similar to that of estrogen receptor. SSB binding was dramatically reduced by the chaotropic salt, NaSCN, whereas binding to the estrogen receptor was not disrupted. SSB is stabilized by sodium molybdate, a property which is characteristic of steroid receptors. Although the role of SSB in the chick oviduct is yet to be determined, an understanding of its properties is essential for accurate determinations of the estrogen receptor.  相似文献   

7.
We have utilized iminodiacetate (IDA) gels with immobilized Zn2+, Cu2+ and Ni2+ ions to evaluate the metal binding properties of uterine estrogen receptor proteins. Soluble (cytosol) receptors labeled with [3H]estradiol were analyzed by immobilized metal affinity chromatography (IMAC) before as well as after (1) 3 M urea-induced transformation to the DNA-binding form, and (2) limited trypsin digestion to separate the steroid- and DNA-binding domains. Imidazole (2-200 mM) affinity elution and pH-dependent (pH 7-3.6) elution techniques were both evaluated and found to resolve several receptor isoforms differentially in both the presence and absence of 3 M urea. Individual receptor forms exhibited various affinities for immobilized Zn2+, Cu2+ and Ni2+ ions, but all intact receptor forms were strongly adsorbed to each of the immobilized metals (Ni2+ greater than Cu2+ much greater than Zn2+) at neutral pH. Generally, similar results were obtained with IDA-Cu2+ and IDA-Ni2+ in the absence of urea. Receptors were tightly bound and not eluted before 100 mM imidazole or pH 3.6. Different results were obtained using IDA-Zn2+; at least four receptor isoforms were resolved on IDA-Zn2+. Receptor-metal interaction heterogeneity and affinity for IDA-Zn2+ and IDA-Cu2+, but not IDA-Ni2+, were substantially decreased in the presence of 3 M urea. The receptor isoforms identified and separated by IDA-Zn2+ chromatography were not separable using high-performance size-exclusion chromatography, density gradient centrifugation, chromatofocusing or DNA-affinity chromatography. The affinity of trypsin-generated (mero)receptor forms for each of the immobilized metals was decreased relative to that of intact receptor. High-affinity metal-binding sites were mapped to the DNA-binding domain, but at least one of the metal-binding sites is located on the steroid-binding domain. Recovery of all receptor forms from the immobilized metal ion columns was routinely above 90%. These results demonstrate the differential utility of various immobilized metals to characterize and separate individual receptor isoforms and domain structures. Receptor-metal interactions warrant further investigation to establish their effects on receptor structure/function relationships. In addition to the biological implications, recognition of estrogen receptor proteins as metal-binding proteins suggests new and potentially powerful receptor immobilization and purification regimes previously unexplored by those in this field.  相似文献   

8.
We have used ammonium sulphate precipitation followed by affinity chromatography to partially purify the estrogen receptor from Xenopus laevis liver which may control the genes for vitellogenin, the precursor of the egg yolk proteins. The rate at which receptor binds estradiol explains the kinetics of the induction of vitellogenin synthesis by estradiol, and the dissociation constant (0.5 X 10(-9) M) explains the concentration dependence of the response, which has a threshold of 10(-9) M estradiol, when 67% of the receptor is bound to estradiol. The estradiol concentration in male liver, which does not make vitellogenin, is 0.18 X 10(-9) M, sufficient to saturate 26% of the receptor, while in female liver, which makes vitellogenin continuously, the estradiol concentration is 3.5 X 10(-9) M, giving 88% saturation of receptor, suggesting that the proportion of occupied receptor decides whether or not the vitellogenin genes are active. In the physiological concentration range, estradiol modulates the level of receptor, which varies between 100 binding sites per nucleus in males and 440 in females, but artificially high concentrations of estradiol raise the level to approximately 1000 sites per nucleus. This suggests that the small increase in vitellogenin mRNA induced by physiological concentrations of estradiol is due to pre-existing receptor and that the much larger increases induced by very high concentrations depends on newly-synthesized receptor.  相似文献   

9.
Estradiol receptor from rat uteri incubated with [32P] orthophosphate has been purified by diethylstilbestrol--Sepharose followed by heparin--Sepharose chromatography. The purified receptor, analyzed by centrifugation through sucrose gradients after incubation with monoclonal antibodies against purified estradiol receptor, appears to be labeled with 32P. The receptor preparation has been further purified by immunoaffinity chromatography and submitted to SDS--poly-acrylamide gel electrophoresis. A heavily 32P-labeled 68 kd protein and a very lightly 32P-labeled 48 kd protein, probably a proteolytic product of the 68 kd protein, were detected. Phosphoamino acid analysis of the receptor eluted from the immunoaffinity column shows that its 32P-labeling occurs exclusively on tyrosine. This is the first report on phosphorylation on tyrosine of a steroid receptor in tissue. It is consistent with our previous finding that a uterus estradiol receptor-kinase, which confers hormone binding ability to the estradiol receptor, in vitro phosphorylates this receptor exclusively on tyrosine. Calf uterus receptor binds with high specificity and affinity to monoclonal anti-phosphotyrosine antibodies covalently bound to Sepharose (Kd = 0.28 nM). Dephosphorylation of the receptor by nuclei containing the calf uterus nuclear phosphatase abolishes the interaction with antibodies. These results suggest that also in calf uterus, estradiol receptor is phosphorylated on tyrosine. Anti-phosphotyrosine antibodies bound to Sepharose have been used to partially purify the estradiol receptor from calf uterus.  相似文献   

10.
Alpha-fetoproteins (AFP) from amniotic fluid of mouse and rat demonstrate high affinity and specificity during their binding with immobilized diethylstilbestrol, which allows to isolate these two proteins by one step using the method of affinity chromatography on Sepharose with immobilized diethylstilbestrol. Meanwhile the yield of mouse AFP was 42%, and rat AFP--75%. The preliminary incubation of the amniotic fluid of rat and mouse with free estradiol results in abrupt fall of AFP outcome, which may testify to the binding of estradiol and diethylstilbestrol by the same receptor sites on AFP molecule.  相似文献   

11.
The nuclear estradiol receptor from chick liver was purified to apparent homogeneity by using a combination of ammonium sulfate precipitation and affinity gel chromatography. The purified receptor migrated as a single band on an SDS-polyacrylamide gel with a molecular weight of 55000 and it exhibited a sedimentation coefficient of 4 S, a dissociation constant of 1.13 nM and a steroid specificity resembling that of the receptor in crude extracts.  相似文献   

12.
An affinity adsorbent, 5'-adenylate-aminohexyl-Sepharose 4B, was prepared by the periodate oxidation of AMp followed by coupling and condensation with amino-hexyl-Sepharose 4B. RNase U2, a purine-specific RNase, was specifically bound to this adsorbent at pH 4.5 and eluted critically at pH 5.9 in the presence of 1 M NaCl, corresponding to the pH dependence of the binding of 2'-AMP to RNase U2. By using this affinity chromatography as a main tool, a simplified and effective purification method for RNase U2 was established with a high yield of 58%. Another form of RNase U2 with low specific activity, named RNase U2-B, was eluted at a slightly higher pH from this adsorbent. RNase U2-B was indistinguishable from the original enzyme (RNase U2-A) in base specificity, affinity for ApA, molecular weight and amino acid composition, but was clearly different in specific activity, molecular activity for ApA, isoelectric point and conformation of molecule. This affinity adsorbent is also effective for the detection or isolation of small amounts of base-specific RNases in crude cell extract.  相似文献   

13.
The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea (+/- 0.4 M KCl) buffers and control buffers (+/- 0.4 M KCl) by chromatography through small columns of Sephadex G-25 or by dialysis at 0-6 degrees C. Equilibrium dissociation constants (Kd) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17 beta-[3H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol (Kd = 0.36 +/- 0.09 nM, n = 14) which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity (Kd = 3.45 +/- 0.86 nM, n = 6) to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. However, KCl did help prevent the reduction in binding capacity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In order to examine the tolerance of the estrogen receptor for 16 alpha-substituents in estradiol, we have synthesized various 16 alpha-substituted estrogens and determined their binding affinity for receptor by a competitive radiometric binding assay. The substituents ranged from small, single-atom substituents (halogens), two-atom substituents (halomethyl groups), to larger alkyl groups and ultimately alkyl groups bearing various functionality, including fluorescent (nitrobenzoxadiazole, NBD) and photoreactive (nitroazidophenyl, NAP) groups. The estrogen receptor seems to have a moderate tolerance for bulky substituents: All of the halogen and halomethyl substituents bind with an affinity at least 50% that of estradiol; in the three atom alkyl series, the affinity declined markedly from propargyl (44%) and allyl (38%) to propyl (5%), suggestive of detailed steric constraints or a preference for unsaturation. The larger, more highly functionalized derivatives ranged in affinity from 0.1-7%, with the highest affinity binders being benzyl (5%) and 4-phenoxy-2(E)-butenyl (7%); most of the lowest affinity ones were the bulky fluorescent and photoreactive derivatives. Thus, the estrogen receptor has good tolerance for estradiol derivatives substituted at the 16 alpha-position with nonpolar groups of moderate bulk; however, with groups of larger bulk, affinity is much lower and becomes highly dependent upon the polarity and detailed structure of the substituents.  相似文献   

15.
The molybdate-stabilized calf uterine estradiol receptor has been purified to near-homogeneity by a three-step procedure. Initial purification by heparin-Sepharose chromatography provides a concentrated receptor extract in 40% yield with a 5-10-fold increase in purity. The inclusion of molybdate in phosphate-buffered cytosol enhances 9-10 S receptor stability in high salt and allows elution of the oligomeric receptor complex from heparin-Sepharose with 0.4 M KCl. A second affinity step utilizing estrone carboxymethyloxime coupled to diaminoethyl bis(2-hydroxypropoxy)butane-Sepharose Cl-4B increases purification by a further 1600-fold. High performance liquid chromatography gives homogeneous receptor which migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a polypeptide of Mr approximately 89,000. The purified molybdate-stabilized receptor sediments at 9.3 +/- 0.2 S (n = 4) in glycerol gradients and has a Stokes radius of 74 +/- 3 A (n = 2) giving a calculated Mr approximately 290,000. These properties and the steroid-binding specificity of the purified receptor bear a close similarity to those found for the 9-10 S receptor in crude cytosol.  相似文献   

16.
Purification of the D-2 dopamine receptor from bovine striatum   总被引:2,自引:0,他引:2  
The D-2 dopamine receptor has been purified 21500 fold from bovine striatal membranes. Solubilized receptor preparation was partially purified by affinity chromatography on a haloperidol adsorbent followed by gel filtration on a Sephacryl S-300 column. The fractions eluted from this column which contained the ligand binding activity were further chromatographed on wheat germ agglutinin conjugated to Sepharose. The resulting receptor preparation displays a major polypeptide band of an apparent molecular weight of 92 kDa, and exhibits a specific binding activity of 2490 pmol spiperone per mg protein. This purified receptor preparation can reabsorb specifically to the haloperidol affinity column indicating that the 92 kDa polypeptide represents the ligand binding unit of the D-2 dopamine receptor.  相似文献   

17.
A new strategy for protein purification using a soluble affinity matrix is described. The method was used for purification of estrogen receptor. Cytosols from rat uteri and human fibroid uterine tissue, after fractionation by ammonium sulfate, were treated with estradiol-polylysine conjugate. The highly basic affinity complex was separated from other proteins by DEAE-Sephacel chromatography. After dissociation of the eluted complex with excess estradiol, the receptor was recovered by CM-Sephadex chromatography. A 2000-fold purification of the rat uterine estrogen receptor was obtained with an activity recovery of 35%.  相似文献   

18.
Estradiol-receptor complex from rat uterus has been shown to have an affinity for DNA-cellulose and ATP-Sepharose. This DNA and ATP binding of estradiol receptor was observed to be sensitive to low concentrations (0.01–0.2mM) of aurintricarboxylic acid. The inhibitor was more effective when added to preparations that contained activated estradiol-receptor complex. Steroid binding properties of the receptor remained intact under the above conditions as judged by charcoal adsorption assays and sucrose gradient analysis. In addition, a 40% inhibition in the nuclear translocation of cytosol estradiol receptor was observed when rat uteri were incubated with 10nM [3H] estradiol under an atmosphere of 95% O2 and 5% CO2 in the presence of aurintric-carboxylic acid. Our results suggest that aurintricarboxylic acid is an effective inhibitor of rat uterine estradiol receptor and that it may be acting by interfering with site(s) on the estradiol receptor which may be exposed upon activation and are subsequently involved in processes such as ATP binding, nuclear uptake and DNA binding.  相似文献   

19.
The purification of trypsin from bovine pancreas was employed in a case study concerning the design and optimization of peptide-ligand adsorbents for affinity chromatography. Four purpose-designed tripeptide-ligands were chemically synthesized (>95% pure), exhibiting an Arg residue as their C-terminal (site P(1)) for trypsin bio-recognition, a Pro or Ala in site P(2), and a Thr or Val in site P(3). Each tripeptide-ligand was immobilized via its N-terminal amino group on Ultrogel A6R agarose gel, which was previously activated with low concentrations of cyanuric chloride (10.5 to 42.5 mumol/g gel). Well over 90% of the peptide used was immobilized. Three different concentrations were investigated for every immobilized tripeptide-ligand, 3.5, 7.0, and 14 mumol/g gel. The K(D) values of immobilized tripeptide-trypsin complexes were determined as well as the purifying performance and the trypsin-binding capacity of the affinity adsorbents. The K(D) values determined were in good agreement with the trypsin purification performance of the respective affinity adsorbents. The tripeptide sequence H-TPR-OH displayed the highest affinity for trypsin (K(D) 8.7 muM), whereas the sequence H-TAR-OH displayed the lowest (K(D) 38 muM). Dipeptide-ligands have failed to bind trypsin. When the ligand H-TPR-OH was immobilized via its N-terminal on agarose, at a concentration of 14 mumol/g gel, it produced the most effective affinity chromatography adsorbent. This adsorbent exhibited high trypsin-binding capacity (approximately 310,000 BAEE units/mL of adsorbent); furthermore, it purified trypsin from pancreatic crude extract to a specific activity of 15,200 BAEE units/mg (tenfold purification), and 82% yield. (c) 1997 John Wiley & Sons, Inc.  相似文献   

20.
Rat intrinsic factor was bound to vitamin B-12-Sepharose to produce intrinsic factor · vitamin B-12-Sepharose. Intestinal receptor for intrinsic factor · vitamin B-12 complex was purified from rat ileal extract by affinity chromatography using the intrinsic factor · vitamin B-12-Sepharose as an affinity adsorbent with recovery of 48.5% and specific activity increased 335 fold of original sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号