首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus stearothermophilus secretes beta-mannanase and alpha-galactosidase enzymatic activities capable of hydrolyzing galactomannan substrates. Expression of the hemicellulase activities in the presence of locust bean gum was sequential, with mannanase activity preceding expression of alpha-galactosidase activity. The hemicellulase activities were purified to homogeneity by a combination of ammonium sulfate fractionation, gel filtration, hydrophobic interaction chromatography, and ion-exchange and chromatofocusing techniques. The purified beta-D-mannanase is a dimeric enzyme (162 kilodaltons) composed of subunits having identical molecular weight (73,000). Maximal activity did not vary between pH 5.5 and 7.5. The beta-D-mannanase activity exhibited thermostability, retaining nearly full activity after incubation for 24 h at 70 degrees C and pH 6.5. The enzyme displayed high specificity for galactomannan substrates, with no-secondary xylanase or cellulase activity detected. Hydrolysis of locust bean gum yielded short oligosaccharides compatible with an endo mode of substrate depolymerization. Initial rate velocities of the mannanase activity displayed substrate inhibition and yielded estimates for Vmax and Km of 455 +/- 60 U/mg and 1.5 +/- 0.3 mg/ml, respectively, at 70 degrees C and pH 6.5. The alpha-galactosidase activity corresponded to a trimeric enzyme (247 kilodaltons) having subunits of identical molecular weight (82,000). The alpha-galactosidase had maximal activity at pH 7 to 7.5 and retained full activity after 24 h of incubation at 60 degrees C. The enzyme had only limited activity on galactomannan substrates as compared with hydrolysis of p-nitrophenyl alpha-D-galactose. Kinetics of p-nitrophenyl alpha-D-galactose hydrolysis yielded linear reciprocal plots corresponding to Vmax and Km of 195 +/- 10 U/mg and 0.25 +/- 0.02 mM, respectively, at 60 degrees C and pH 7. The characterization of the mannanase activity is consistent with its potential use in enzymatic bleaching of softwood pulps.  相似文献   

2.
Leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) has been purified to homogeneity from a moderate thermophilic bacterium, Bacillus stearothermophilus. Am improved method of preparative slab gel electrophoresis was used effectively to purify it. The enzyme has a molecular mass of about 300,000 and consists of six subunits with identical molecular mass (Mr, 49,000). The enzyme does not lose its activity by heat treatment at 70° C for 20 min, and incubation in the pH range of 5.5–10.0 at 55° C for 5 min. It is stable in 10 mM phosphate buffer (pH 7.2) containing 0.01% 2-mercaptoethanol at over 1 month, and is resistant to detergent and ethanol treatment. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their keto analogs in the presence of NAD+ and NADH, respectively, as the coenzymes. The pH optima are 11 for the deamination of l-leucine, and 9.7 and 8.8 for the amination of -ketoisocaproate and -ketoisovalerate, respectively. The Michaelis constants were determined: 4.4 mM for l-leucine, 3.3 mM for l-valine, 1.4 mM for l-isoleucine and 0.49 mM for NAD+ in the oxidative deamination. The B. stearothermophilus enzyme shows similar catalytic properties, but higher activities than that from Bacillus sphaericus.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

3.
Bacillus stearothermophilus T-6 produces an extracellular xylanase that was shown to optimally bleach pulp at pH 9 and 65 degrees C. The enzyme was purified and concentrated in a single adsorption step onto a cation exchanger and is made of a single polypeptide with an apparent M(r) of 43,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Xylanase T-6 is an endoxylanase that completely degrades xylan to xylose and xylobiose. The pIs of the purified protein were 9 and 7 under native and denaturing conditions, respectively. The optimum activity was at pH 6.5; however, 60% of the activity was still retained at pH 10. At 65 degrees C and pH 7, the enzyme was stable for more than 10 h; at 65 degrees C and pH 9, the half-life of the enzyme was approximately 6 h. Kinetic experiments at 55 degrees C gave Vmax and Km values of 288 U/mg and 1.63 mg/ml, respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by Zn2+, Cd2+, and Hg2+. Xylan completely protected the protein from inactivation by N-bromosuccinimide. The N-terminal sequence of the first 45 amino acids of the enzyme showed high homology with the N-terminal region of xylanase A from the alkalophilic Bacillus sp. strain C-125.  相似文献   

4.
Thermostable and thermoactive beta-mannanase (1,4-beta-D-mannan mannanohydrolase [EC 3.2.1.78]), beta-mannosidase (beta-D-mannopyranoside hydrolase [EC 3.2.1.25]) and alpha-galactosidase (alpha-D-galactoside galactohydrolase [EC 3.2.1.22]) were purified to homogeneity from cell extracts and extracellular culture supernatants of the hyperthermophilic eubacterium Thermotoga neapolitana 5068 grown on guar gum-based media. The beta-mannanase was an extracellular monomeric enzyme with a molecular mass of 65 kDa. The optimal temperature for activity was 90 to 92 degrees C, with half-lives (t1/2) of 34 h at 85 degrees C, 13 h at 90 degrees C, and 35 min at 100 degrees C. The beta-mannosidase and alpha-galactosidase were found primarily in cell extracts. The beta-mannosidase was a homodimer consisting of approximately 100-kDa molecular mass subunits. The optimal temperature for activity was 87 degrees C, with t1/2 of 18 h at 85 degrees C, 42 min at 90 degrees C, and 2 min at 98 degrees C. The alpha-galactosidase was a 61-kDa monomeric enzyme with a temperature optimum of 100 to 103 degrees C and t1/2 of 9 h at 85 degrees C, 2 h at 90 degrees C, and 3 min at 100 degrees C. These enzymes represent the most thermostable and thermoactive versions of these types yet reported and probably act synergistically to hydrolyze extracellular galactomannans to monosaccharides by T. neapolitana for nutritional purposes. The significance of such substrates in geothermal environments remains to be seen.  相似文献   

5.
Alpha-galactosidase was purified from a fresh fruiting body of Ganoderma lucidum by precipitation with ammonium sulfate and column chromatographies with DEAE-Sephadex and Con A-Sepharose. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was similar to that of Mortierella vinacea alpha-galactosidase. The molecular mass of the enzyme was about 56 kDa by SDS-polyacrylamide gel electrophoresis, and about 249 kDa by gel filtration column chromatography. The optimum pH and temperature were 6.0 and 70 degrees C, respectively. The enzyme was fully stable to heating at 70 degrees C for 30 min. It hydrolyzed p-nitrophenyl-alpha-D-galactopyranoside (Km=0.4 mM) but hydrolyzed little o-nitrophenyl-alpha-D-galactopyranoside. It also hydrolyzed melibiose, raffinose, and stachyose. The enzyme catalyzed the transgalactosylation reaction which synthesized melibiose. The product was confirmed by various analyses.  相似文献   

6.
Three thermostable proteases, designated S, N, and B, are extracellular enzymes produced by Bacillus stearothermophilus strain TLS33. They were purified by lysine affinity chromatography, strong anion exchange Q HyperD chromatography, and Ultrogel AcA44 gel filtration. The molecular masses of the enzymes determined by SDS-PAGE and zymography were approximately 36, 53, and 71 kDa, respectively. Thermostable protease S bound strongly to the lysine affinity column and could be purified by this single step. The optimum pH values of proteases S, N, and B were shown to be 8.5, 7.5, and 7.0, respectively. The maximum activities for the enzymes were at 70, 85, and 90 degrees C, respectively. Proteases S, N, and B at pH 7.0 in the presence of 5 mM CaCl(2) retained half their activities after 30 min at 72, 78, and 90 degrees C, respectively. All three thermostable proteases were strongly inhibited by the metal chelators EDTA and 1,10-phenanthroline, and the proteolytic activities were restored by addition of ZnCl(2). They can thus be classified as Zn(2+) metalloproteases. The cleavage specificities of proteases S, N, and B on a 30-residue synthetic peptide from pro-BPN' subtilisin were Tyr-Ile, Phe-Lys, and Gly-Phe, respectively.  相似文献   

7.
Thermostable exochitinase was purified to homogeneity from the culture fluid of Bacillus stearothermophilus CH-4, which was isolated from agricultural compost containing shrimp and crabs. The enzyme was a single polypeptide with a molecular mass of 74 kDa, and the N-terminal amino acid sequence was WDKVGVTDLI ISLNIPEADAVVVGMTLQLQALHLY. The enzyme specifically hydrolyzed C-4 beta-anomeric bonding of N-acetylchitooligosaccharides, as well as their p-nitrophenyl (pNP) derivatives. The enzyme also hydrolyzed pNP-beta-N-acetyl-D-galactosaminide (26% of the activity of pNP-beta-N-acetyl-D-glucosaminide). These results indicated that the enzyme is a beta-N-acetylhexosaminidase (EC 3.2.1.52). Kms for acetylchitooligosaccharides were 1 x 10(-4) to 6 x 10(-4) M, while those for the pNP derivatives were 4 x 10(-3) to 8 x 10(-3) M. The optimum temperature of the enzyme was 75 degrees C, and it retained 100 and 28% reactivity after heating at 60 and 80 degrees C, respectively. The enzyme exhibited 15 to 20% activity in a reaction mixture containing 80% organic solvents and maintained 91% of its original activity after exposure to 8 M urea. The optimum and stable pH was around 6.5. Fe2+, Zn2+, and Ca2+ activated the enzyme, but Hg2+ was inhibitory. N-Acetyl-D-glucosamine inhibited the enzyme competitively (Ki = 4.3 x 10(-4) M), whereas N-acetyl-D-galactosamine did not; in contrast, D-glucosamine and D-galactosamine activated it.  相似文献   

8.
An intracellular, thermostable, neutral α-galactosidase (α-D -galactoside galactohydrolase EC 3.2.1.32) was produced in pilot plant quantities from a strain of Bacillus stearothermophilus. The organism was cultured at 50°C in a soluble neutral medium containing water extract of soybean meal (3%) and 0.5% yeast extract. The enzyme biosynthesis was inducible and sensitive to catabolite repression. After autolysis of the cells, the α-galactosidase was selectively and quantitatively complexed from clarified beer directly onto DEAE Sephadex; and enzyme-rich fractions were batchwise eluted with an increasing gradient of NaCl solutions. The eluates were given two consecutive isopropyl alcohol precipitations, and the aqueous solutions of the second precipitate were dialyzed and lyophilized. Final product activity recovery was 72% based on the crude fermentation beer. Best specific activity was 5.2 u/mg protein. Further laboratory purification (DEAE Sephadex and Bio-Gel P200) yielded a product with 14.2 u/mg protein.  相似文献   

9.
Isozymes of alpha-galactosidase from Bacillus stearothermophilus   总被引:4,自引:0,他引:4  
Two molecular forms of alpha-galactosidase (EC 3.2.1.22) synthesized constitutively by Bacillus stearothermophilus, strain AT-7, have been purified. alpha-Galactosidase I (with the substrate p-nitrophenyl alpha-D-galactopyranoside (PNPG)) has a pH optimum of 6 and half-life at 65 degrees C of > 2 h at low protein concentration. alpha-Galactosidase II has a pH optimum of 7 with PNPG and a half-life at 65 degrees C of about 3 min. The isozymes also differ with respect to their Km with PNPG and melibiose. Both enzymes are inhibited competitively by D-galactose, melibiose, and Tris. With the beta-glycosides cellobiose and lactose either noncompetitive or mixed-type inhibition is observed, with the pattern dependent on both the pH and the isozyme. The two isozymes have similar Arrhenius activation energies (about 20 kcal/mol, 1 kcal = 4.184 kJ). Their molecular weights, estimated by disc gel electrophoresis, are alpha-galactosidase I, 280 000 +/- 30 000 and alpha-galactosidase II, 325 000 +/- 15 000. Dodecyl sulfate gel electrophoresis gave a single band for each enzyme. The respective molecular weights, 81 000 +/- 500 for alpha-galactosidase I and 84 000 +/- 500 for alpha-galactosidase II, suggest that both enzymes consist of four subunits.  相似文献   

10.
Inorganic pyrophosphatase [EC 3.6.1.1] was purified from Bacillus stearothermophilus to a homogeneous state both ultracentrifugally and electrophoretically. Ultracentrifugal analysis revealed that the molecular weight of the enzyme is 122,000 and the sedimentation coefficient (S0.34%/20, W) is 5.2S. The enzyme molecule in 0.1% sodium dodecylsulfate solution containing 1 mM 2-mercaptoethanol had an estimated molecular weight of 70,000 on the basis of SDS-polyacrylamide gel electrophoresis results, which indicates that the enzyme may consist of two subunits. Divalent cations such as Mg2+, Mn2+, and Co2+ are required for the enzymatic activity. Pyrophosphate is the only substrate for the enzyme. ATP and p-chloromercuribenzoate inhibit the enzyme reaction markedly.  相似文献   

11.
Bacillus stearothermophilus T-6 produced an alpha-L-arabinofuranosidase when grown in the presence of L-arabinose, sugar beet arabinan, or oat spelt xylan. At the end of a fermentation, about 40% of the activity was extracellular, and enzyme activity in the cell-free supernatant could reach 25 U/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 20000, and the enzyme was purified eightfold by anion-exchange and hydrophobic interaction chromatographies. The molecular weight of T-6 alpha-L-arabinofuranosidase was 256,000, and it consisted of four identical subunits as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The native enzyme had a pI of 6.5 and was most active at 70 degrees C and at pH 5.5 to 6.0. Its thermostability at pH 7.0 was characterized by half-lives of 53, 15, and 1 h at 60, 65, and 70 degrees C, respectively. Kinetic experiments at 60 degrees C with p-nitrophenyl alpha-L-arabinofuranoside as a substrate gave a Vmax, a Km, and an activation energy of 749 U/mg, 0.42 mM, and 16.6 kcal/mol, (ca. 69.5 kJ/mol), respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by 1 mM Hg2+. T-6 alpha-L-arabinofuranosidase released L-arabinose from arabinan and had low activity on oat spelt xylan. The enzyme acted cooperatively with T-6 xylanase in hydrolyzing oat spelt xylan, and L-arabinose, xylose, and xylobiose were detected as the end reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The molecular mass of esterases usually falls in the range of 20–160 kDa, although an esterase of 5.7 kDa from Candida lipolytica has been described. Three other enzymes smaller than 10 kDa have been reported, all of which were more thermostable than their higher molecular mass counterparts. This paper describes the purification of an extracellular esterase hydrolysing fluorescein dibutyrate from Bacillus stearothermophilus NCIMB 13335. The esterase had a molecular mass of 1.57 kDa when analysed by SDS-PAGE, gel filtration and MALDI-TOF spectrometry. This enzyme retained more than 90% of its activity after incubation at 90°C for 2 h.  相似文献   

13.
Bacillus stearothermophilus MK232, which produced a highly thermostable neutral protease, was isolated from a natural environment. By several steps of mutagenesis, a hyper-producing mutant strain, YG185, was obtained. The enzyme productivity was twice as much as that of the original strain. This extracellular neutral protease was purified and crystallized. The molecular weight of the enzyme was 34,000 by SDS-polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the enzyme activity were 7.5 and 70°C, respectively, and the enzyme was stable at pH 5–10 and below 70°C. The thermostability and specific activity of the new protease are around 10% and 40% higher than those of thermolysin (the neutral protease from Bacillus thermoproteolyticus), respectively. The enzyme was inactivated by EDTA, but not by phenylmethylsulfonyl fluoride. These results indicate that the enzyme is a highly thermostable neutral-(metallo)protease.  相似文献   

14.
The moderate thermophilic bacterium Bacillus stearothermophilus P1 expresses a thermostable lipase that was active and stable at the high temperature. Based on secondary structure predictions and secondary structure-driven multiple sequence alignment with the homologous lipases of known three-dimensional (3-D) structure, we constructed the 3-D structure model of this enzyme and the model reveals the topological organization of the fold, corroborating our predictions. We hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and identified Ser-113, Asp-317, and His-358 as the putative members of the catalytic triad that are located close to each other at hydrogen bond distances. In addition, the strongly inhibited enzyme by 10 mM PMSF and 1-hexadecanesulfonyl chloride was indicated that it contains a serine residue which plays a key role in the catalytic mechanism. It was also confirmed by site-directed mutagenesis that mutated Ser-113, Asp-317, and His-358 to Ala and the activity of the mutant enzyme was drastically reduced.  相似文献   

15.
16.
Aspartate aminotransferase (EC 2.6.1.1) was purified to homogeneity from cell extracts of a newly isolated thermophilic bacterium, Bacillus sp. strain YM-2. The enzyme consisted of two subunits identical in molecular weight (Mr, 42,000) and showed microheterogeneity, giving two bands with pIs of 4.1 and 4.5 upon isoelectric focusing. The enzyme contained 1 mol of pyridoxal 5'-phosphate per mol of subunit and exhibited maxima at about 360 and 415 nm in absorption and circular dichroism spectra. The intensities of the two bands were dependent on the buffer pH; at neutral or slightly alkaline pH, where the enzyme showed its maximum activity, the absorption peak at 360 nm was prominent. The enzyme was specific for L-aspartate and L-cysteine sulfinate as amino donors and alpha-ketoglutarate as an amino acceptor; the KmS were determined to be 3.0 mM for L-aspartate and 2.6 mM for alpha-ketoglutarate. The enzyme was most active at 70 degrees C and had a higher thermostability than the enzyme from Escherichia coli. The N-terminal amino acid sequence (24 residues) did not show any similarity with the sequences of mammalian and E. coli enzymes, but several residues were identical with those of the thermoacidophilic archaebacterial enzyme recently reported.  相似文献   

17.
A thermostable lipase from Bacillus sp. has been purified to homogeneity as judged by disc-PAGE, SDS-PAGE, and isoelectric focusing. The purification included ammonium sulfate fractionation, treatment with acrinol, and sequential column chromatographies on DEAE-Sephadex A-50, Toyopearl HW-55F, and Butyl Toyopearl 650M. The purified enzyme was found to be a monomeric protein with Mr of 22,000, and pI of 5.1. The optimal pH at 30 degrees C, and optimal temperature at pH 5.6 were 5.5-7.2, and 60 degrees C, respectively, when olive oil was used as the substrate. The substrate specificity towards simple triglycerides was broad and 1- and 3-positioned ester bonds were hydrolyzed in preference to a 2-positioned ester bond. The addition of acetone to the assay mixture in the range of 0-60% (v/v) stimulated the enzyme remarkably, whereas n-hexane had an inhibitory effect.  相似文献   

18.
Protease enzyme from Bacillus megaterium was successively purified by ammonium sulfate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-200. The purification steps of protease resulted in the production of two protease fractions namely protease P1 and P2 with specific activities of 561.27 and 317.23 U mg?1 of protein, respectively. The molecular weights of B. megaterium P1 and P2 were 28 and 25 KDa, respectively. The purified fractions P1 and P2 were rich in aspartic acid and serine. Relatively higher amounts of alanine, leucine, glycine, valine, thereonine valine and glutamic acid were also present. The maximum protease activities for both enzyme fractions were attained at 50 °C, pH 7.5, 1% of gelatine concentration and 0.5 enzyme concentrations. P1 and P2 fractions were more stable over pH 7.0–8.5 and able to prolong their thermal stability up to 80 °C. The effect of different inhibitors on the protease activity of both enzyme fractions was also studied. The enzyme was found to be serine active as it had been affected by lower concentrations of phenylmethylsulfonyl fluoride (PMSF). Complete dehairing of the enzyme-treated skin was achieved in 12 h, at room temperature.  相似文献   

19.
An alpha-galactosidase [EC 3.2.1.22] was isolated from the fruit of the watermelon, Citrullus battich. The enzyme was purified by procedures including extraction, ammonium sulfate precipitation, and chromatographies on DEAE-Sephadex, CM-Sephadex and Sephadex G-100. The final preparation was found to be fairly homogeneous on disc and SDS-polyacrylamide gel electrophoresis, and sufficiently free from other glycosidase activities. The molecular weight of the enzyme was estimated to be 45,000 by Sephadex G-100 column chromatography and SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 4.5 for natural substrates and at 5.9 for artificial substrates. The enzyme liberates the alpha-galactose units from oligosaccharides of the raffinose series and ceramide trihexoside, and the hemagglutination-inhibiting activities of human ovarian cyst B-glycoprotein and blood group B-type ghosts were abolished by the enzyme.  相似文献   

20.
A thermostable aspartase was purified from a thermophile Bacillus sp. YM55-1 and characterized in terms of activity and stability. The enzyme was isolated by a 5-min heat treatment at 75 degrees C in the presence of 11% (w/v) ammonium sulfate and 100 mM aspartate, followed by Q-Sepharose anion-exchange and AF-Red Toyopearl chromatographies. The native molecular weight of aspartase determined by gel filtration was about 200,000, and this enzyme was composed of four identical monomers with molecular weights of 51,000 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Unlike Escherichia coli aspartase, the enzyme was not activated by the presence of magnesium ion at alkaline pH. At the optimum pH, the Km and Vmax were 28.5 mM and 700 units/mg at 30 degrees C and 32.0 mM and 2200 units/mg at 55 degrees C, respectively. The specific activity was four and three times higher than those of E. coli and Pseudomonas fluorescens enzymes at 30 degrees C, respectively. Eighty percent of the activity was retained after a 60-min incubation at 55 degrees C, and the enzyme was also resistant to chemical denaturants; 80% of the initial specific activity was detected in assay mixtures containing 1.0 M guanidine hydrochloride. The purified enzyme shared a high sequence homology in the N-terminal region with aspartases from other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号