首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Recently two main genetic maps [Rohrer et al. Genetics 136, 231 (1994); Archibald et al. Mamm. Genome 6, 157 (1995)] and a cytogenetic map [Yerle et al. Mamm. Genome 6, 175 (1995)] for the porcine genome were reported. As only a very few microsatellites are located on the cytogenetic map, it appears to be important to increase the relationships between the genetic and cytogenetic maps. This document describes the regional mapping of 100 genetic markers with a somatic cell hybrid panel. Among the markers, 91 correspond to new localizations. Our study enabled the localization of 14 new markers found on both maps, of 54 found on the USDA map, and of 23 found on the PiGMaP map. Now 21% and 43% of the markers on the USDA and PiGMaP linkage maps respectively are physically mapped. This new cytogenetic information was then integrated within the framework of each genetic map. The cytogenetic orientation of the USDA linkage maps for Chromosomes (Chrs) 3, 8, 9, and 16 and of PiGMaP for Chr 8 was determined. USDA and PiGMaP linkage maps are now oriented for all chromosomes, except for Chrs 17 and 18. Moreover, the linkage group ``R' from the USDA linkage map was assigned to Chr 6. Received: 21 September 1995 / Accepted: 19 January 1996  相似文献   

2.
A precise genetic map containing anonymous markers and genes is indispensable for the efficient selection of candidate gene(s) responsible for quantitative trait loci (QTL) traits. For this purpose, a first version of a radiation hybrid cell (RH) map has been constructed by using the INRA-University of Minnesota RH panel for 757 markers (IMpRH) (Hawken et al. 1999, Mamm. Genome 10: 824–830). In this study, 280 swine genomic fragments in BAC clones were assigned to the IMpRH map; 255 BAC clones were successfully linked to first-generation linkage groups (LOD > 4.8). The remaining 25 clones could not be mapped, because their lod-scores to the closest markers in the first generation map were less than 4.8. In addition, 16 BAC clones, mapped to swine Chromosome (Chr) 1 by IMpRH mapping, were subjected to isolation of microsatellites (MSs). Thirty-one MSs were isolated from 15 BAC clones, and 24 of 31 (77%) MSs derived from 14 clones were found to be polymorphic. We also mapped both termini of 12 BAC clones to the IMpRH map, in order to measure resolution of the IMpRH map; the resolution was found to range from 8 kb/centiRay to more than 126 kb/centiRay depending on the region. Received: 21 June 2001 / Accepted: 28 September 2001  相似文献   

3.
The laboratory rat, Rattus novegicus, is a major model system for physiological and pathophysiological studies, and since 1966 more than 422,000 publications describe biological studies on the rat (NCBI/Medline). The rat is becoming an increasingly important genetic model for the study of specific diseases, as well as retaining its role as a major preclinical model system for pharmaceutical development. The initial genetic linkage map of the rat contained 432 genetic markers (Jacob et al. 1995) out of 1171 developed due to the relatively low polymorphism rate of the mapping cross used (SHR × BN) when compared to the interspecific crosses in the mouse. While the rat genome project continues to localize additional markers on the linkage map, and as of 11/97 more than 3,200 loci have been mapped. Current map construction is using two different crosses (SHRSP × BN and FHH × ACI) rather than the initial mapping cross. Consequently there is a need to provide integration among the different maps. We set out to develop an integrated map, as well as increase the number of markers on the rat genetic map. The crosses available for this analysis included the original mapping cross SHR × BN reciprocal F2 intercross (448 markers), a GH × BN intercross (205 markers), a SS/Mcw × BN intercross (235 markers), and a FHH/Eur × ACI/Hsd intercross (276 markers), which is also one of the new mapping crosses. Forty-six animals from each cross were genotyped with markers polymorphic for that cross. The maps appear to cover the vast majority of the rat genome. The availability of these additional markers should facilitate more complete whole genome scans in a greater number of strains and provide additional markers in specific genomic regions of interest. Received: 3 December 1997 / Accepted: 20 February 1998  相似文献   

4.
We have isolated more than 12,000 clones containing microsatellite sequences, mainly consisting of (CA)n dinucleotide repeats, using genomic DNA from the BN strain of laboratory rat. Data trimming yielded 9636 non-redundant microsatellite sequences, and we designed oligonucleotide primer pairs to amplify 8189 of these. PCR amplification of genomic DNA from five different rat strains yielded clean amplification products for 7040 of these simple-sequence-length-polymorphism (SSLP) markers; 3019 markers had been mapped previously by radiation hybrid (RH) mapping methods (Nat Genet 22, 27–36, 1998). Here we report the characterization of these newly developed microsatellite markers as well as the release of previously unpublished microsatellite marker information. In addition, we have constructed a genome-wide linkage map of 515 markers, 204 of which are derived from our new collection, by genotyping 48 F2 progeny of (OLETFxBN)F2 crosses. This map spans 1830.9 cM, with an average spacing of 3.56 cM. Together with our ongoing project of preparing a whole-genome radiation hybrid map for the rat, this dense linkage map should provide a valuable resource for genetic studies in this model species. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

5.
Linkage map of seven polymorphic markers on rat Chromosome 18   总被引:8,自引:0,他引:8  
A genetic linkage map of seven polymorphic markers was created with F2 intercross progeny of F344/N and LEW/N rats and assigned to rat Chromosome (Chr) 18. Five of the markers described were defined by simple sequence length polymorphisms (SSLPs) associated with five genes: transthyretin (TTR), trypsin inhibitor-like protein (TILP), 2 adrenergic receptor (ADRB2), olfactory neuron-specific G protein (OLF), and gap junction protein (GJA1). One marker was defined by a restriction fragment length polymorphism (RFLP) detected with a probe for the human colony stimulating factor 1 receptor (CSF1R) gene. The D18N1R locus was defined by an anonymous DNA fragment amplified by the randomly amplified polymorphic DNA (RAPD) technique with a single short primer. These seven DNA loci formed a single genetic linkage group 30.4 cM in length with the following order: TTR-6.8 cM-D18N1R-9.1 cM-TILP-4.3 cM-CSF1R-0 cM-ADRB2-10.2 cM-OLF-0 cM-GJA1. The five SSLP markers were highly polymorphic. In a total of 13 inbred rat strains analyzed (F344/ N, LEW/N, LOU/MN, WBB1/N, WBB2/N, MR/N, MNR/N, ACI/N, SHR/N, WKY/N, BN/SsN, BUF/N, and LER/N), three to six alleles were detected for each marker. Remarkable linkage conservation was detected between the region of rat Chr 18 mapped and a region of mouse Chr 18. However, genes associated with these markers have been mapped to three different human chromosomes (Chrs 5, 6, and 18). The markers described here should be useful for genetic mapping studies and genetic monitoring of inbred rat strains.  相似文献   

6.
Nine microsatellite loci were mapped to rat Chromosome (Chr) 7 by genetic linkage and somatic cell hybrid analysis. These loci include the gene encoding a member of the IID sub-family of cytochrome P450 (Cyp2d), a gene with repetitive sequences expressed during myotube formation (D7Arb1e), four anonymous loci, D7Arb81, D7Arb208, D7Arb569, D7Arb609a, and three DNA loci defined by MapPairTM markers R245, R513, and R1071. The nine loci were all identified by PCR-based microsatellite polymorphism analysis and were characterized in 40 F2 intercross progeny of Fischer (F344/N) and Lewis (LEW/N) rats for segregation analysis. These markers formed a single linkage group spanning 76.8 cM with the following order and distances: D7Arb569-11.4 cM-D7Arb81-9.7 cM-R513-2.6 cM-Cyp2d-0.0 cM-R245-1.3 cM-D7Arb1e-10.4 cM-R1071-15.9 cM-D7Arb609a-15.4 cM-D7Arb208. Physical mapping of Cyp2d by somatic cell hybrid analysis allowed us to assign this linkage group to rat Chr 7. For each marker, two to six alleles were detected in a panel of 16 inbred rat strains (ACI/N, BN/SsN, BUF/N, DA/Bkl, F344/N, LER/N, LEW/N, LOU/MN, MNR/N, MR/N, SHR/N, SR/Jr, SS/Jr, WBB1/N, WBB2/N, WKY/N).  相似文献   

7.
The LEW/Ztm-ci2 rat is an autosomal recessive mutant that displays circling behavior, deafness, progressive retinopathy, locomotor hyperactivity, ataxia, and opisthotonus. We performed a genome-wide scan of a (LEW/Ztm-ci2 × BN/Ztm) F1 × LEW/Ztm-ci2 backcross population with anonymous microsatellite markers to analyze the genetics of this mutant rat. This linkage analysis demonstrated a very strong association of RNO10 SSLP markers to the phenotype with a core region in the central part of the chromosome. The knowledge of genes mapping to this part of the rat genome and their linkage to SSLP markers is still poor. We developed SSLP markers closely linked to genes, which might be responsible for the mutant phenotype by using the growing amount of rat-specific DNA sequences available at World Wide Web databases. Application of this method facilitated the search for candidate genes for the phenotype of the LEW-ci2 rat. We were able to map Myo15 and its neighboring genes, Znf179 and Aldh3a1, to the region of interest and Myo1c to a more distal location on RNO10. Further rat BAC clones were used to create a physical map of the region of interest. This map revealed the position of further genes. Among those is Kcnj12. Owing to their localization on RNO10 and their involvement in a similar pathology in human and mouse, Myo15 and Kcnj12 can be regarded as candidate genes for the deafblind phenotype of the LEW-ci2 rat.  相似文献   

8.
Brassica rapa var. trilocularis-B. oleracea var. alboglabra monosomic alien addition lines (MAALs) were used to assign simple sequence repeat (SSR) markers to the nine C-genome chromosomes. A total of 64 SSR markers specific to single C-chromosomes were identified. The number of specific markers for each chromosome varied from two (C3) to ten (C4, C7 and C9), where the designation of the chromosomes was according to Cheng et al. (Genome 38:313-319, 1995). Seventeen additional SSRs, which were duplicated on 2-5 C-chromosomes, were also identified. Using the SSR markers assigned to the previously developed eight MAALs and recently obtained aneuploid plants, a new Brassica rapa-B. oleracea var. alboglabra MAAL carrying the alien chromosome C7 was identified and developed. The application of reported genetically mapped SSR markers on the nine MAALs contributed to the determination of the correspondence between numerical C-genome cytological (Cheng et al. in Genome 38:313-319, 1995) and linkage group designations. This correspondence facilitates the integration of C-genome genetic information that has been generated based on the two designation systems and accordingly increases our knowledge about each chromosome. The present study is a significant contribution to genetic linkage analysis of SSR markers and important agronomic traits in B. oleracea and to the potential use of the MAALs in plant breeding.  相似文献   

9.
A genetic linkage map for mouse Chromosome (Chr) 4 (MMU 4) has been constructed with an intersubspecific backcross between the C57BL/KsJ strain homozygous for the misty (m) coat color locus and the inbred Mus musculus musculus Czech II strain. Several recently developed PCR-based simple sequence length polymorphism (SSLP) markers have been intercalated among genebased markers including six anchor loci on mouse Chr 4 to assemble this map. Marker order and genetic distances are similar to the composite genetic linkage map compiled from crosses between a variety of other inbred and feral mouse strains. Transmission ratio distortion in favor of feral alleles is apparent for a region of distal MMU 4. In addition, the misty phenotype is more fully penetrant in the present backcross than in other reported interspecific and intersubspecific crosses. Backcrosses employing inbred Mus musculus musculus strains may allow reliable phenotyping and mapping of mouse mutations displaying complex phenotypes with incomplete and/or ambigious penetrance on other feral genetic backgrounds.  相似文献   

10.
Seven genes and two anonymous markers were mapped to a single linkage group on rat chromosome 10 using progeny of an F2 intercross of Fischer (F344/N) and Lewis (LEW/N) inbred rats. Two genes, the neu oncogene or cellular homologue of the viral oncogene erbb2 (ERBB2) and growth hormone (GH) were mapped by Southern blot analysis of restriction fragment length polymorphisms. Five genes, embryonic skeletal myosin heavy chain (MYH3), androgen binding protein/sex hormone binding globulin (SHBG), asialoglycoprotein receptor (hepatic lectin)-1 (ASGR1), ATP citrate lysase (CLATP), and pancreatic polypeptide (PPY), and two anonymous markers, F16F2 and F10F1, were mapped using PCR amplification techniques. The PCR-typable polymorphic markers for the five genes were also highly polymorphic in 10 other inbred rat strains (SHR/N, WKY/N, MNR/N, MR/N, LOU/MN, BN/SsN, BUF/N, WBB1/N, WBB2/N, and ACI/N). These markers should be useful in genetic analysis of traits described in inbred rat strains, as well as in genetic monitoring of such strains. The loci in this linkage group covered 50 cM of rat chromosome 10 with the following order: MYH3, SHBG/ASGR1 (no recombinants detected), F16F2, ERBB2, CLATP, PPY, GH, and F10F1. Comparative gene mapping analysis indicated that this region of rat chromosome 10 exhibits linkage conservation with regions of human chromosome 17 and mouse chromosome 11.  相似文献   

11.
Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in rats that closely mimics many clinical and histopathological aspects of multiple sclerosis. Non-MHC quantitative trait loci regulating myelin oligodendrocyte glycoprotein-induced EAE have previously been identified in the EAE-permissive strain, DA, on rat chromosomes 4, 10, 15, and 18. To find any additional gene loci in another well-known EAE-permissive strain and thereby to assess any genetic heterogeneity in the regulation of the disease, we have performed a genome-wide linkage analysis in a reciprocal (LEW.1AV1 x PVG.1AV1) male/female F(2) population (n = 185). We examined reciprocal crosses, but no parent-of-origin effect was detected. The parental rat strains share the RT1(av1) MHC haplotype; thus, non-MHC genes control differences in EAE susceptibility. We identified Eae16 on chromosome 8 and Eae17 on chromosome 13, significantly linked to EAE phenotypes. Two loci, on chromosomes 1 and 17, respectively showed suggestive linkage to clinical and histopathological EAE phenotypes. Eae16 and Eae17 differ from those found in previously studied strain combinations, thus demonstrating genetic heterogeneity of EAE. Furthermore, we detected a locus-specific parent-of-origin effect with suggestive linkage in Eae17. Further genetic and functional dissection of these loci may disclose critical disease-regulating molecular mechanisms.  相似文献   

12.
Several gene linkage maps have been produced for cultivated barley. We have produced a new linkage map for barley, based on a cross between Hordeum vulgare subsp. spontaneum and Hordeum vulgare subsp. vulgare (Hvs x Hvv), having a higher level of polymorphism than most of the previous barley crosses used for RFLP mapping. Of 133 markers mapped in the Hvs x Hvv F2 population, 69 were previously mapped on other barley maps, and 26 were mapped in rice, maize, or wheat. Two known gene clones were mapped as well as two morphological markers. The distributions of previously mapped markers were compared with their respective barley maps to align the different maps into one consensus map. The distributions of common markers among barley, wheat, rice and maize were also compared, indicating colinear linkage groups among these species.To be considered dual first authorsPublished with the approval of the Director of the Colorado State University/Agricultural Experiment Station.  相似文献   

13.
Genetic linkage map in sour cherry using RFLP markers   总被引:6,自引:0,他引:6  
 Restriction fragment length polymorphism (RFLP) linkage maps of two tetraploid sour cherry (Prunus cerasus L., 2n=4x=32) cultivars, Rheinische Schattenmorelle (RS) and Erdi Botermo (EB), were constructed from 86 progeny from the cross RS×EB. The RS linkage map consists of 126 single-dose restriction fragment (SDRF, Wu et al. 1992) markers assigned to 19 linkage groups covering 461.6 cM. The EB linkage map has 95 SDRF markers assigned to 16 linkage groups covering 279.2 cM. Fifty three markers mapped in both parents were used as bridges between both maps and 13 sets of homologous linkage groups were identified. Homoeologous relationships among the sour cherry linkage groups could not be determined because only 15 probes identified duplicate loci. Fifty nine of the markers on the linkage maps were detected with probes used in other Prunus genetic linkage maps. Four of the sour cherry linkage groups may be homologous with four of the eight genetic linkage groups identified in peach and almond. Twenty one fragments expected to segregate in a 1 : 1 ratio segregated in a 2 : 1 ratio. Three of these fragments were used in the final map construction because they all mapped to the same linkage group. Six fragments exhibited segregation consistent with the expectations of intergenomic pairing and/or recombination. Received: 1 April 1998 / Accepted: 9 June 1998  相似文献   

14.
Over 500 probes revealing restriction fragment length polymorphisms (RFLPs) have been isolated by Schumm et al. (1988). We describe here the chromosomal assignment of 14 of the most highly polymorphic markers in that set of probes, with polymorphism information content values of up to 0.98. The probes were mapped using a panel of human x rodent somatic cell hybrids and were found to be distributed among nine different autosomes. Chromosome localization of such highly polymorphic markers has been an important step in the construction of the human genetic map, as a large number of RFLP probes has now been localized by genetic linkage studies to these loci.  相似文献   

15.
Sixteen polymorphic markers, including markers for eight new loci, forming three linkage groups, were assigned to rat Chromosome (Chr) 4 by linkage analysis of the progeny of an F2 intercross of Fischer (F344/N) and Lewis (LEW/N) inbred rats. One gene, Igk, was mapped by restriction fragment length polymorphism (RFLP) analysis. One marker for Tcrb was identified by the polymorphic insertion of a repetitive LINE element. The remaining 14 markers contained polymorphic simple sequence repeats (SSRs). Ten were identified in genes (Tgfa, Npy, Prss1, Prss2, Aldr1, Iapp, Prp, Eno2, Cacnlla1, and Il6), one was identified in a sequence related to a gene (Egr4l1), and three were identified in anonymous DNA segments. The SSR markers were highly polymorphic in 16 inbred rat strains. These markers expand the genetic map of the rat and should be useful in future genetic studies of inbred rats.  相似文献   

16.
We have constructed a genetic linkage map in the rat by analyzing the strain distribution patterns of 500 genetic markers in a large set of recombinant inbred strains derived from the spontaneously hypertensive rat and the Brown-Norway rat (HXB and BXH recombinant inbred strains). 454 of the markers could be assigned to specific chromosomes, and the amount of genome covered by the mapped markers was estimated to be 1151 centimorgans. By including a variety of morphologic, biochemical, immunogenetic, and molecular markers, the current map integrates and extends existing linkage data and should facilitate rat gene mapping and genetic studies of hypertension and other complex phenotypes of interest in the HXB and BXH recombinant inbred strains. Received: 21 June 1995 / Accepted: 11 September 1995  相似文献   

17.
利用两个测序水稻品种构建微卫星连锁图谱   总被引:6,自引:0,他引:6  
利用已完成基因组测序的两个水稻品种日本晴和931l的数据库成功开发出水稻微卫星新标记,并利用由90个单株组成的日本晴×9311 F2作图群体,构建了一张包含152个SSR标记位点、覆盖基因组总长度2 455.7 cM的连锁图谱,有46个SSR新标记为自主开发,该图谱标记间的平均遗传距离为16.16 cM;并将未能在Temnykh等人(2001)构建的图谱上定位的微卫星标记RM345和RM494定位在第6染色体上.通过与Temnykh等人(2001)和兰涛等人(2003)所构建的图谱从作图群体的类型和大小、标记的类型和数量、标记在染色体上的线性排列顺序等几个方面进行比较,所绘制的图谱其标记在染色体线性排列上与Temnykh等人绘制的图谱具有很高的一致性,达93.81%.  相似文献   

18.
We have constructed a high-resolution consensus genetic map of the rat in a single large intercross, which integrates 747 framework markers and 687 positions of our whole-genome radiation hybrid (RH) map of the rat. We selected 136 new gene markers from the GenBank database and assigned them either genetically or physically to rat chromosomes to evaluate the accuracy of the integrated linkage-RH maps in the localization of new markers and to enrich existing comparative mapping data. These markers and 631 D-Got- markers, which are physically mapped but still uncharacterized for evidence of polymorphism, were tested for allele variations in a panel of 16 rat strains commonly used in genetic studies. The consensus linkage map constructed in the GK x BN cross now comprises 1620 markers of various origins, defining 840 resolved genetic positions with an average spacing of 2.2 cM between adjacent loci, and includes 407 gene markers. This whole-genome genetic map will contribute to the advancement of genetic studies in the rat by incorporating gene/EST maps, physical mapping information, and sequence data generated in rat and other mammalian species into genetic intervals harboring disease susceptibility loci identified in rat models of human genetic disorders.  相似文献   

19.
Here we present the first comprehensive genetic linkage map of the heterothallic oomycetous plant pathogen Phytophthora infestans. The map is based on polymorphic DNA markers generated by the DNA fingerprinting technique AFLP (Vos et al., 1995, Nucleic Acids Res. 23: 4407-4414). AFLP fingerprints were made from single zoospore progeny and 73 F1 progeny from two field isolates of P. infestans. The parental isolates appeared to be homokaryotic and diploid, their AFLP patterns were mitotically stable, and segregation ratios in the F1 progeny were largely Mendelian. In addition to 183 AFLP markers, 7 RFLP markers and the mating type locus were mapped. The linkage map comprises 10 major and 7 minor linkage groups covering a total of 827 cM. The major linkage groups are composed of markers derived from both parents, whereas the minor linkage groups contain markers from either the A1 or the A2 mating type parent. Non-Mendelian segregation ratios were found for the mating type locus and for 13 AFLP markers, all of which are located on the same linkage group as the mating type locus. Copyright 1997 Academic Press  相似文献   

20.
Seven polymorphic markers comprising a single linkage group were assigned to rat Chromosome (Chr) 5 by linkage analysis of the progeny of an F2 intercross of Fischer (F344/N) and Lewis (LEW/N) inbred rats. Three genes, -L-fucosidase 1 (FUCA1), mitochondrial superoxide dismutase (SOD2), and glucose transporter (GLUT1), were mapped by restriction fragment length polymorphism (RFLP) analysis. Two genes, glucose transporter (GTG3) and elastase II (ELAII), one pseudogene for tubulin (TUBAPS), and one sequence related to the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFBP1-related sequence) were mapped by simple sequence repeat (SSR) polymorphism analysis. The loci are in the following order: SOD2, GTG3/GLUT1, FUCA1, ELAII/PFKFBP1-related sequence, and TUBAPS. This linkage group covered 68.3 cM of rat Chr 5. The SSR markers were highly polymorphic in 13 inbred rat strains (SHR/N, WKY/N, MNR/N, MR/N, LOU/MN, BN/SsN, BUF/N, WBB1/N, WBB2/N, ACI/N, LER/N, F344/N, and LEW/N). These markers, located on rat Chr 5, will be useful in genetic studies of inbred rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号