首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
While the role of hemodynamic variables on the development of intimal hyperplasia in arteriovenous fistulas for hemodialysis has been examined, less is known about the intramural biomechanical factors. In this study, arteriovenous fistulas were created by implantation of e-PTFE grafts between carotid artery and jugular vein in healthy pigs. In vivo recordings exhibited a three-fold pressure and flow elevation in grafted veins after fistula creation, remaining so until sacrifice. The chief morphological observation in grafted vessels was wall thickening at two weeks, serving to restore intramural stresses to homeostatic levels, and a less marked internal diameter enlargement, gradually normalizing intimal shear after four weeks. The residual strains and opening angle, specifying the zero-stress configuration, increased with differences reaching significance at twelve weeks. Association with histomorphological findings on intima, media and adventitia growth disclosed a correlation between intimal hyperplasia and opening angle increase. Elastin and cellular contents diminished opposite to collagen content, most differences occurring within the first four weeks after grafting. Inflation/extension testing showed that post-fistula the vein wall became progressively thicker and stiffer, lacking restoration of compliance to baseline levels. The present data may further our understanding of the dynamics of venous biomechanical remodeling under pressure and flow-overload conditions.  相似文献   

2.
Arteriovenous fistulae have been previously created by our group, through implantation of e-PTFE grafts between the carotid artery and jugular vein in healthy pigs, to gather comprehensive data on the time-course of the adapted geometry, composition, and biomechanical properties of the venous wall exposed to chronic increases in pressure and flow. The aim of this study was to mathematically assess the biomechanical adaptation of venous wall, by characterizing our previous in vitro inflation/extension testing data obtained 2, 4, and 12 weeks post-fistula, using a microstructure-based material model. Our choice for such a model considered a quadratic function for elastin with a four-fiber family term for collagen, and permitted realistic data characterization for both overloaded and control veins. As structural validation to the hemodynamically-driven differences in the material response, computerized histology was employed to quantitate the composition and orientation of collagen and elastin-fiber networks. The parameter values optimized showed marked differences among the overloaded and control veins, namely decrease in the quadratic function parameters and increase in the four-fiber family parameters. Differences among the two vein types were highlighted with respect to the underlying microstructure, namely the reduced elastin and increased collagen contents induced by pressure and flow-overload. Explicit correlations were found of the material parameters with the two basic scleroprotein contents, substantiating the material model used and the characterization findings presented. Our results are expected to improve the current understanding of the dynamics of venous adaptation under sustained pressure- and flow-overload conditions, for which data are largely unavailable and contradictory.  相似文献   

3.
Patency rates of saphenous vein grafts following coronary artery bypass grafting (CABG) depend on multiple factors. Information regarding the impact of biomechanical properties of vein grafts on patency rates is not available. The objective of the present study was to evaluate whether uncontrolled manual pressure distension during routine preparation of the saphenous vein in CABG-induced changes in the biomechanical properties of the vein. The morphometric and stress-strain properties were studied in isolated segments of the saphenous vein from 12 patients undergoing elective CABG. Six segments were manually distended without pressure control and six were not distended. The mechanical test was performed as a ramp inflation using syringe pump. The vein dimensions were obtained from digitised images at different pressures as well as at the no-load and zero-stress states. The circumferences, the wall and lumen area, the wall thickness, and the outer diameter as function of the applied pressure were largest in the segments with uncontrolled manual distension compared to those without distension (P<0.05). The opening angle and the absolute value of the residual strains were lower (P<0.01) and the circumferential stress-strain curve shifted to the left, indicating the wall became stiffer with uncontrolled manual distension compared to those without distension (P<0.05). In conclusion, manual pressure distension changed the morphometric and biomechanical properties of the saphenous vein. The perspective is that studies on biomechanical properties on the saphenous vein may guide surgeons how to handle graft material without causing major changes of the biomechanical properties during harvesting and preparation.  相似文献   

4.

Background and Purpose

Chronic hypertension decreases internal diameter of cerebral arteries and arterioles. We recently showed that short-term treatment with the angiotensin II receptor blocker telmisartan restored baseline internal diameter of small cerebral arterioles in spontaneously hypertensive rats (SHR), via reversal of structural remodeling and inhibition of the angiotensin II vasoconstrictor response. As larger arteries also participate in the regulation of cerebral circulation, we evaluated whether similar short-term treatment affects middle cerebral arteries of SHR.

Methods

Baseline internal diameters of pressurised middle cerebral arteries from SHR and their respective controls, Wistar Kyoto rats (WKY) and responses to angiotensin II were studied in a small vessel arteriograph. Pressure myogenic curves and passive internal diameters were measured following EDTA deactivation, and elastic modulus from stress-strain relationships.

Results

Active baseline internal diameter was 23% lower in SHR compared to WKY, passive internal diameter (EDTA) 28% lower and elastic modulus unchanged. Pressure myogenic curves were shifted to higher pressure values in SHR. Telmisartan lowered blood pressure but had no effect on baseline internal diameter nor on structural remodeling (passive internal diameter and elastic modulus remained unchanged compared to SHR). Telmisartan shifted the pressure myogenic curve to lower pressure values than SHR.

Conclusion

In the middle cerebral arteries of SHR, short-term treatment with telmisartan had no effect on structural remodeling and did not restore baseline internal diameter, but allowed myogenic tone to adapt towards lower pressure values.  相似文献   

5.
Previous studies have shown that intestinal mucosa is compressed in vivo. The present study investigated the contribution of the mucosal villi to the biomechanical properties in circumferential direction in the guinea pig jejunum. Eight 20-cm-long jejunal segments were excised and each separated into two 10-cm-long segments. The mucosal villi were scraped off from half the segments. The segments were pressurized in vitro with Krebs solution from 0-10cmH(2)O using a ramp distension protocol with simultaneous diameter recordings. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. Removing the villi resulted in small opening angles (139+/-16 degrees vs 189+/-27 degrees with villi) and small absolute values of residual strain (inner: -0.05+/-0.03 vs -0.33+/-0.06 with villi; outer: 0.11+/-0.04 vs 0.33+/-0.08 with villi) (P<0.001). The outer diameter as a function of the pressure did not differ between jejunal segments with villi and without villi. The average mid-wall stress-strain curve without villi was shifted to the left compared to the segment with villi, indicating the wall was stiffer without villi. However, if the stress-strain computation for the segments with villi was referenced to the zero-stress state of the segments without villi, the curve was only partly shifted to the left. In conclusion, this paper provides the first direct experimental evidence that the villi are important for the biomechanical properties of guinea pig small intestine in circumferential direction, because the villi not only affect the zero-stress state configuration but also partially affect the stress-strain distribution in the intestinal wall. Therefore, the villi should be taken into account in the analysis of biomechanical properties of the intestinal wall.  相似文献   

6.
7.
Microgravity is associated with an impaired cardiac output response to orthostatic stress. Mesenteric veins are critical in modulating cardiac filling through venoconstriction. The purpose of this study was to determine the effects of simulated microgravity on the capacitance of rat mesenteric small veins. We constructed pressure-diameter relationships from vessels of 21-day hindlimb-unweighted (HLU) rats and control rats by changing the internal pressure and measuring the external diameter. Pressure-diameter relationships were obtained both before and after stimulation with norepinephrine (NE). The pressure-diameter curves of HLU vessels were shifted to larger diameters than control vessels. NE (10(-4) M) constricted veins from control animals such that the pressure-diameter relationship was significantly shifted downward (i.e., to smaller diameters at equal pressure). NE had no effect on vessels from HLU animals. These results indicate that, after HLU, unstressed vascular volume may be increased and can no longer decrease in response to sympathetic stimulation. This may partially underlie the mechanism leading to the exaggerated fall in cardiac output and stroke volume seen in astronauts during an orthostatic stress after exposure to microgravity.  相似文献   

8.
Recent experimental studies have shown significant alterations of the vascular smooth muscle (VSM) tone when an artery is subjected to an elevation in pressure. Therefore, the VSM participates in the adaptation process not only by means of its synthetic activity (fibronectins and collagen) or proliferative activity (hypertrophy and hyperplasia) but also by adjusting its contractile properties and its tone level. In previous theoretical models describing the time evolution of the arterial wall adaptation in response to induced hypertension, the contribution of VSM tone has been neglected. In this study, we propose a new biomechanical model for the wall adaptation to induced hypertension, including changes in VSM tone. On the basis of Hill's model, total circumferential stress is separated into its passive and active components, the active part being the stress developed by the VSM. Adaptation rate equations describe the geometrical adaptation (wall thickening) and the adaptation of active stress (VSM tone). The evolution curves that are derived from the theoretical model fit well the experimental data describing the adaptation of the rat common carotid subjected to a step increase in pressure. This leads to the identification of the model parameters and time constants by characterizing the rapidity of the adaptation processes. The agreement between the results of this simple theoretical model and the experimental data suggests that the theoretical approach used here may appropriately account for the biomechanics underlying the arterial wall adaptation.  相似文献   

9.
Episodic increases in shear stress have been proposed as a mechanism that induces training-induced adaptation in arterial wall remodeling in humans. To address this hypothesis in humans, we examined bilateral brachial artery wall thickness using high-resolution ultrasound in healthy men across an 8-wk period of bilateral handgrip training. Unilaterally, shear rate was attenuated by cuff inflation around the forearm to 60 mmHg. Grip strength, forearm volume, and girth improved similarly between the limbs. Acute bouts of handgrip exercise increased shear rate (P < 0.005) in the noncuffed limb, whereas cuff inflation successfully decreased exercise-induced increases in shear. Brachial blood pressure responses similarly increased during exercise in both the cuffed and noncuffed limbs. Handgrip training had no effect on baseline brachial artery diameter, blood flow, or shear rate but significantly decreased brachial artery wall thickness after 6 and 8 wk (ANOVA, P < 0.001) and wall-to-lumen ratio after week 8 (ANOVA, P = 0.005). The magnitude of decrease in brachial artery wall thickness and wall-to-lumen ratio after exercise training was similar in the noncuffed and cuffed arms. These results suggest that exercise-induced changes in shear rate are not obligatory for arterial wall remodeling during a period of 8 wk of exercise training in healthy humans.  相似文献   

10.
In order to understand the participation of the geometrical and elastic properties of the large cerebral arteries in the maintenance of brain circulatory homeostasis, biomechanical properties of isolated internal carotid artery (extracranial part) and vertebral artery (intrathoracic part) were investigated both in a relaxed and in an activated (3x 10(-6) mol.l-1 norepinephrine) state of the smooth muscle. Quasi-static large deformation mechanical test was carried out by means of changing the intraluminal pressure slowly (2.5 mmHg.sec-1) and cyclicly in a range of 0-250 mmHg at in vivo length while external diameter was recorded continuously as a function of the intraluminal pressure. Maximum active tangential strain was found to be -2.7 +/- 1.6% at 70 mmHg for the internal carotid artery, and -5.9 +/- 1.1% at 100 mmHg for the vertebral artery. Incremental elastic modulus decreased and distensibility increased in both arteries following smooth muscle activation, these alterations, however, were larger in the case of the vertebral artery. A U-shaped characteristic impedance of vertebral artery was found both in relaxed and in constricted states of this vessel. Minimum values for the relaxed and the activated segments were found at 90 mmHg and 120 mmHg, respectively. These results support the hypothesis that certain biomechanical properties of the large arteries, like impedance, can be regarded as controlled variables that may contribute to the optimization of circulatory functions.  相似文献   

11.
Diabetic foot ulcers are known to have a biomechanical etiology. Among the mechanical factors that cause foot lesions, shear stresses have been either neglected or underestimated. The purpose of this study was to determine various plantar pressure and shear variables in the diabetic and control groups and compare them. Fifteen diabetic patients with neuropathy and 20 non-diabetic subjects without foot symptoms were recruited. Subjects walked on a custom-built platform capable of measuring local normal and tangential forces simultaneously. Pressure-time integral quantities were increased by 54% (p=0.013) in the diabetic group. Peak AP and resultant shear magnitudes were found to be about 32% larger (p<0.05), even though diabetic subjects walked at a slower velocity. Lower AP and ML stress range (peak-to-peak) values were observed in the control subjects (p<0.05). Shear-time integral values were increased in the diabetic group by 61% and 132% for AP and resultant shear cases, respectively (p<0.05). Plantar shear is known to be a factor in callus formation and has previously been associated with higher ulcer incidence. During gait, shear stresses are induced with twice the frequency of pressure characteristically. Therefore, plantar shear should be investigated further from a broader perspective including the temporal specifications and fatigue failure characteristics of the affected plantar tissue.  相似文献   

12.
Organ perfusion is regulated by vasoactivity and structural adaptation of small arteries and arterioles. These resistance vessels are sensitive to pressure, flow and a range of vasoactive stimuli. Several strongly interacting control loops exist. As an example, the myogenic response to a change of pressure influences the endothelial shear stress, thereby altering the contribution of shear-dependent dilation to the vascular tone. In addition, acute responses change the stimulus for structural adaptation and vice versa. Such control loops are able to maintain resistance vessels in a functional and stable state, characterized by regulated wall stress, shear stress, matched active and passive biomechanics and presence of vascular reserve. In this modeling study, four adaptation processes are identified that together with biomechanical properties effectuate such integrated regulation: control of tone, smooth muscle cell length adaptation, eutrophic matrix rearrangement and trophic responses. Their combined action maintains arteries in their optimal state, ready to cope with new challenges, allowing continuous long-term vasoregulation. The exclusion of any of these processes results in a poorly regulated state and in some cases instability of vascular structure.  相似文献   

13.
Orito K  Yamane T  Kanai T  Fujii Y  Wakao Y  Matsuda H 《Life sciences》2004,75(9):1135-1145
ACE and chymase play crucial roles in the establishment of pressure overload-induced cardiac hypertrophy. In the present study, time sequences of ACE and chymase-like activities, and their correlation with hypertrophic changes including free wall thickness and cardiac fibrosis, were elucidated in dogs with constant pressure overload to the right ventricle. Pulmonary artery banding (PAB) was applied so that the diameter of the main pulmonary artery was reduced to 60% of the original size, right ventricular pressure was elevated by about 70%, and pulmonary artery flow was increased by about three times of that in sham operation groups. These increases remained unchanged 15, 60, and 180 days after PAB, suggesting that constant right ventricular pressure overload was obtained, at least during this period. The diameter of the right ventricular myocyte was slightly increased and the percentage of fractional shortening was decreased 15 days after PAB. Right ventricular wall thickness and interstitial collagenous fiber were, however, not different from those of sham-operated dogs, suggesting that this period is a period of adaptation to the overload. Sixty days after PAB, the diameter of the right ventricular myocyte was further increased, and right ventricular wall thickness and interstitial collagenous fiber were also increased. These changes were almost identical even 180 days after PAB. Thus, stable hypertrophy was elicited from 60 through 180 days after PAB. ACE activity was facilitated at the adaptation period to the overload (15 days after PAB), but chymase activity was not facilitated at this period. On the other hand, both ACE and chymase-like activities were unchanged in the earlier phase (60 days after PAB) of stable hypertrophy, but facilitated in the latter phase (180 days after PAB). These findings suggest the pathophysiologic roles of these enzymes may be different over the time course of pressure overload-induced hypertrophy.  相似文献   

14.
Cheer AY  Dwyer HA  Barakat AI  Sy E  Bice M 《Biorheology》1998,35(6):415-435
Arterial hemodynamic forces may play a role in the localization of early atherosclerotic lesions. We have been developing numerical techniques based on overset or "Chimera" type formulations to solve the Navier-Stokes equations in complex geometries simulating arterial bifurcations. This paper presents three-dimensional steady flow computations in a model of the rabbit aorto-celiac bifurcation. The computational methods were validated by comparing the numerical results to previously-obtained flow visualization data. Once validated, the numerical algorithms were used to investigate the sensitivity of the computed flow field and resulting wall shear stress distribution to various geometric and hemodynamic parameters. The results demonstrated that a decrease in the extent of aortic taper downstream of the celiac artery induced looping fluid motion along the lateral walls of the aorta and shifted the peak wall shear stress from downstream of the celiac artery to upstream. Increasing the flow Reynolds number led to a sharp increase in spatial gradients of wall shear stress. The flow field was highly sensitive to the flow division ratio, i.e., the fraction of total flow rate that enters the celiac artery, with larger values of this ratio leading to the occurrence of flow separation along the dorsal wall of the aorta. Finally, skewness of the inlet velocity profile had a profound impact on the wall shear stress distribution near the celiac artery. While not physiological due to the assumption of steady flow, these results provide valuable insight into the fluid physics at geometries simulating arterial bifurcations.  相似文献   

15.
Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 +/- 5, 91 +/- 11, and 97 +/- 13 s(-1)) compared with the superficial femoral (53 +/- 4, 39 +/- 77, and 44 +/- 5 s(-1)) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm.  相似文献   

16.
Flow-mediated dilation is aimed at normalization of local wall shear stress under varying blood flow conditions. Blood flow velocity and vessel diameter are continuous and opposing influences that modulate wall shear stress. We derived an index FMDv to quantify wall shear stress normalization performance by flow-mediated dilation in the brachial artery. In 22 fasting presumed healthy men, we first assessed intra- and inter-session reproducibilities of two indices pFMDv and mFMDv, which consider the relative peak and relative mean hyperemic change in flow velocity, respectively. Second, utilizing oral glucose loading, we evaluated the tracking performance of both FMDv indices, in comparison with existing indices [i.e., the relative peak diameter increase (%FMD), the peak to baseline diameter ratio (Dpeak/Dbase), and the relative peak diameter increase normalized to the full area under the curve of blood flow velocity with hyperemia (FMD/shearAUC) or with area integrated to peak hyperemia (FMD/shearAUC_peak)]. Inter-session and intra-session reproducibilities for pFMDv, mFMDv and %FMD were comparable (intra-class correlation coefficients within 0.521–0.677 range). Both pFMDv and mFMDv showed more clearly a reduction after glucose loading (reduction of ~45%, p≤0.001) than the other indices (% given are relative reductions): %FMD (~11%, p≥0.074); Dpeak/Dbase (~11%, p≥0.074); FMD/shearAUC_peak (~20%, p≥0.016) and FMD/shearAUC (~38%, p≤0.038). Further analysis indicated that wall shear stress normalization under normal (fasting) conditions is already far from ideal (FMDv << 1), which (therefore) does not materially change with glucose loading. Our approach might be useful in intervention studies to detect intrinsic changes in shear stress normalization performance in conduit arteries.  相似文献   

17.
We examined the hypothesis that changes in heart rate at rest influence bioactivity of nitric oxide (NO) in humans by examining forearm blood flow responses during cardiac pacing in six subjects. Peak forearm and mean forearm blood flows across the cardiac cycle were continuously recorded at baseline and during pacing, with the use of high-resolution brachial artery ultrasound and Doppler flow velocity measurement. The brachial artery was cannulated to allow continuous infusion of saline or N(G)-monomethyl-L-arginine (L-NMMA). As heart rate increased, no changes in pulse pressure and mean or peak blood flow were evident. L-NMMA had no effect on brachial artery diameter, velocity, or flows compared with saline infusion. These results contrast with our recent findings that exercise involving the lower body, associated with increases in heart rate and pulse pressure, also increased forearm blood flow, the latter response being diminished by L-NMMA. These data suggest that changes in blood pressure, rather than pulse frequency, may be the stimulus for shear stress-mediated NO release in vivo.  相似文献   

18.
The repulsive pressure between filaments in the lattice of skinned rabbit and frog striated muscle in rigor has been measured as a function of interfilament spacing, using the osmotic pressure generated by solutions of large, uncharged polymeric molecules (dextran and polyvinylpyrrolidone). The pressure/spacing measurements have been compared with theoretically derived curves for electrostatic pressure. In both muscles, the major part of the experimental curves (100-2,000 torr) lies in the same region as the electrostatic pressure curves, providing that a thick filament charge diameter of approximately 30 nm in rabbit and approximately 26 nm in frog is assumed. In chemically skinned or glycerol-extracted rabbit muscle the fit is good; in chemically skinned frog sartorius and semitendinosus muscle the fit is poor, particularly at lower pressures where a greater spacing is observed than expected on theoretical grounds. The charge diameter is much larger than the generally accepted value for thick filament backbone diameter. This may be because electron microscope results have underestimated the amount of filament shrinkage during sample preparation, or because most of the filament charge is located at some distance from the backbone surface, e.g., on HMM-S2. Decreasing the ionic strength of the external solution, changing the pH, and varying the sarcomere length all give pressure/spacing changes similar to those expected from electrostatic pressure calculations. We conclude that over most of the external pressure range studied, repulsive pressure in the lattice is predominantly electrostatic.  相似文献   

19.
Right ventricular (RV) weight increases dependent on time after myocardial infarction (MI) and on MI size. The sequential changes in RV volume and hemodynamics and their relations to left ventricular (LV) remodeling after MI are unknown. We therefore examined the time course of RV remodeling in rats with LV MI. MI was produced by left coronary artery ligation. Four, eight, and sixteen weeks later, LV and RV hemodynamic measurements were performed and pressure-volume curves were obtained. For serial measurement of RV volumes and performance, cine-MRI was performed 2 and 8 wk after MI. The ratios of beta-myosin heavy chain (MHC) to alpha-MHC and skeletal to cardiac alpha-actin were determined for the RV and LV after large MI or sham operation. RV weight increased in rats with MI, as did RV volume. RV pressure-volume curves were shifted toward larger volumes 16 wk after large MI. RV systolic pressure increased gradually over time; however, the gain in RV weight was always in excess of RV systolic pressure. The ratios of skeletal to cardiac alpha-actin and beta-MHC to alpha-MHC were increased after MI in both ventricles in a similar fashion. Because RV wall stress was not increased after infarction, mechanical factors may not conclusively explain hypertrophy, which maintained balanced loading conditions for the RV even after large LV infarction.  相似文献   

20.
The epicardial coronary arteries experience significant torsion in the axial direction due to changes in the shape of the heart during the cardiac cycle. The objective of this study was to determine the torsional mechanical properties of the coronary arteries under various circumferential and longitudinal loadings. The coronary artery was treated as a two-layer composite vessel consisting of intima-medial and adventitial layers, and the shear modulus of each layer was determined. Eight porcine hearts were obtained at a local abattoir, and their right coronary and left anterior descending arteries were isolated and tested in vitro with a triaxial torsion machine (inflation, longitudinal stretch, and circumferential twist). After the intact vessel was tested, the adventitia was dissected away, leaving an intact media that was then tested under identical triaxial loading conditions. We proposed a biomechanical analysis to compute the shear modulus of the adventitia from the measured shear moduli of the intact vessel and the media. To validate our predictions, we used four additional hearts in which the shear modulus of the adventitia was measured after dissection of media. Our results show that the shear modulus does not depend on the shear stress or strain but varies linearly with circumferential and longitudinal stresses and in a nonlinear way with the corresponding strains. Furthermore, we found that the shear modulus of the adventitia is larger than that of the intact vessel, which is larger than the vessel media. These results may have important implications for baroreceptor sensitivity, circulation of the vasa vasorum, and coronary dissection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号