首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   

2.
《Cell》2023,186(1):32-46.e19
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

3.
Species often occur in subdivided populations as a consequence of spatial heterogeneity of the habitat. To describe the spatial organization of subpopulations, existing theory proposes three main population models: patchy population, metapopulation and isolated populations. These models differ in their predicted levels of connectivity among subpopulations, and in the risk that a subpopulation will go extinct. However, spatially discrete subpopulations are commonly considered to be organized as metapopulations, even though explicit tests of metapopulation assumptions are rare. Here, we test predictions of the three models on the basis of demographic and genetic data, a combined approach so far surprisingly little used in mobile organisms. From 2002 to 2005, we studied nine subpopulations of the wetland-restricted reed bunting ( Emberiza schoeniclus ) in the southeastern part of the Canton Zurich (Switzerland), from which local declines of this species have been reported. Here, wetlands are as small as 2.7 ha and separated through intensively used agricultural landscapes. Demographic data consisted of dispersal of colour-banded individuals among subpopulations, immigration rates and extinction-/recolonization dynamics. Genetic data were based on the distribution of genetic variability and gene flow among subpopulations derived from the analysis of nine microsatellite loci. Both demographic and genetic data revealed that the patchy population model best described the spatial organization of reed bunting subpopulations. High levels of dispersal among subpopulations, high immigration into the patchy population, and genetic admixture suggested little risk of extinction of both subpopulations and the entire patchy population. This study exemplifies the idea that spatially discrete subpopulations may be organized in ways other than a metapopulation, and hence has implications for the conservation of subpopulations and species.  相似文献   

4.
Archaeological, genetic, and linguistic evidence has supported the idea that northern China is the original center of modern Sino‐Tibetan‐speaking populations. However, the demographic history of subsequent southward migration and genetic admixture of Han Chinese with surrounding indigenous populations remain uncharacterized, and the language shifts and assimilations accompanied by movement of people, or just an adaptation of cultural ideas among populations in central China is still unclear, especially for Tibeto‐Burman‐speaking Tujia and central Han Chinese populations. To resolve this, we genotyped over 60K genome‐wide markers in 505 unrelated individuals from 63 indigenous populations. Our results showed both studied Han and Tujia were at the intermediate position in the modern East Asian North–South genetic cline and there was a correlation between the genetic composition and the latitude. We observed the strong genetic assimilation between Tujia people and central Han Chinese, which suggested massive population movements and genetic admixture under language borrowing. Tujia and central Han Chinese could be modeled as a two‐way admixture deriving primary ancestry from a northern ancestral population closely related to the ancient DevilsCave and present‐day Tibetans and a southern ancestral population closely related to the present‐day Tai‐Kadai and Austronesian‐speaking groups. The ancestral northern population we suspect to be related to the Neolithic millet farming groups in the Yellow River Basin or central China. We showed that the newly genotyped populations in Hubei Province had a higher proportion of DevilsCave or modern Tungusic/Mongolic‐related northern ancestries, while the Hunan populations harbored a higher proportion of Austronesian/Tai‐Kadai‐related southern ancestries.  相似文献   

5.
There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial overharvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbour high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.  相似文献   

6.
湖北海棠的等位酶变异和遗传多样性研究   总被引:19,自引:0,他引:19  
康明  黄宏文 《生物多样性》2002,10(4):376-385
采用超薄平板微型聚丙烯酰胺等电聚焦电泳方法对湖北海棠(Malus hupehensis)的9个野生居群和2个人工栽培居群的等位酶变异和遗传多样性进行了初步研究。通过对12个酶系统29个酶位点的检测,结果表明湖北海棠有25个酶位点的等位基因频率分布差异,,有10个居群发现稀有等位基因,并有11个(37.9%)重复位点;湖北海棠的遗传多样性水平很高,等位基因平均数A=2.127,多态位点百分率P=74.927,平均预期杂合度He=0.376;居群间的基因分化系数GST=0.224。与其他苹果属植物相比,湖北海棠具有中等丰富的遗传变异水平。居群间的基因流仅为Nm=0.866,表明遗传漂变是影响居群遗传变异和遗传结构的一个重要因素。  相似文献   

7.
8.
Genetic structure is ubiquitous in wild populations and is the result of the processes of natural selection, genetic drift, mutation, and gene flow. Genetic drift and divergent selection promotes the generation of genetic structure, while gene flow homogenizes the subpopulations. The ability to detect genetic structure from marker data diminishes rapidly with a decreasing level of differentiation among subpopulations. Weak genetic structure may be unimportant over evolutionary time scales but could have important implications in ecology and conservation biology. In this paper we examine methods for detecting and quantifying weak genetic structures using simulated data. We simulated populations consisting of two putative subpopulations evolving for up to 50 generations with varying degrees of gene flow (migration), and varying amounts of information (allelic diversity). There are a number of techniques available to detect and quantify genetic structure but here we concentrate on four methods: F(ST), population assignment, relatedness, and sibship assignment. Under the simple mating system simulated here, the four methods produce qualitatively similar results. However, the assignment method performed relatively poorly when genetic structure was weak and we therefore caution against using this method when the analytical aim is to detect fine-scale patterns. Further work should examine situations with different mating systems, for example where a few individuals dominate reproductive output of the population. This study will help workers to design their experiments (e.g., sample sizes of markers and individuals), and to decide which methods are likely to be most appropriate for their particular data.  相似文献   

9.
群体遗传结构中的基因流   总被引:26,自引:1,他引:26  
曲若竹  侯林  吕红丽  李海燕 《遗传》2004,26(3):377-382
群体遗传结构上的差异是遗传多样性的一种重要体现,对群体遗传结构的研究已有较久的历史,而其中的基因流研究近些年来越来越受到重视。它对群体遗传学、进化生物学、保护生物学、生态学有着极其重要的作用。虽然传统的群体遗传学能估测基因流大小,但它的精确性还有很大局限性。随着生物技术的进步,对基因流的研究逐渐向分子水平过渡,应用蛋白质电泳技术、分子标记技术(RAPD、RFLP、VNTR、ISSR、DNA测序等)方法对群体间基因流的流动水平进行了深入细致的研究。通过综述群体遗传结构的几种模式:陆岛模式、海岛模式、阶石模式、距离隔离模式、层次模式,以及在群体遗传结构的几种模式基础上的基因流的研究方法、作用、地位和近些年来研究者的研究成果,并指出了这些方法的局限性。  相似文献   

10.
11.
Poleward range expansions are observed for an increasing number of species, which may be an effect of global warming during the past decades. However, it is still not clear in how far these expansions reflect simple geographical shifts of species ranges, or whether new genetic adaptations play a role as well. Here, we analyse the expansion of the wasp spider Argiope bruennichi into Northern Europe during the last century. We have used a range‐wide sampling of contemporary populations and historical specimens from museums to trace the phylogeography and genetic changes associated with the range shift. Based on the analysis of mitochondrial, microsatellite and SNP markers, we observe a higher level of genetic diversity in the expanding populations, apparently due to admixture of formerly isolated lineages. Using reciprocal transplant experiments for testing overwintering tolerance, as well as temperature preference and tolerance tests in the laboratory, we find that the invading spiders have possibly shifted their temperature niche. This may be a key adaptation for survival in Northern latitudes. The museum samples allow a reconstruction of the invasion's genetic history. A first, small‐scale range shift started around 1930, in parallel with the onset of global warming. A more massive invasion of Northern Europe associated with genetic admixture and morphological changes occurred in later decades. We suggest that the latter range expansion into far Northern latitudes may be a consequence of the admixture that provided the genetic material for adaptations to new environmental regimes. Hence, global warming could have facilitated the initial admixture of populations and this resulted in genetic lineages with new habitat preferences.  相似文献   

12.
Chinese mitten crab (Eriocheir sinensis) has higher commercial value as food source than any other species of Eriocheir in China.To evaluate the germplasm resources and characterize the genetic diversity and population structure of the crabs in different water systems,two stocks and two farming populations were assessed with 25 polymorphic microsallite loci available in public GenBank.Basic statistics showed that the average observed heterozygosity (Ho) amongst populations ranged from 0.5789 to 0.6824.However,a remarkable presence of inbreeding and heterozygote deficiencies were observed.To analyze population structure,pairwise FST coefficients explained only ~10.3% variability from the subdivision of mitten crab populations,the remaining variability stems from the subdivision within subpopulations.Although the four populations had slight differentiation,different allelic frequencies resulted in distinct population structures.Two stocks and one farming population were clustered together to the phylogenetic branch of Yangtze crab,with an approximate membership of 95%.Whereas,another fanning population was clustered singly to the phylogenetic branch of the Liaohe crab,with a membership of 97.1%.The tests for individual admixture showed that Yangtze crab had probably been contaminated with individuals from other water systems.Genetic relationships between populations also supported the conclusion that Yangtze crab and Liaohe crab had different gene pools in spite of the origins of the same species.  相似文献   

13.
14.
A simple method is presented for developing polymorphic, anonymous DNA markers suitable for population genetic studies. Anonymous DNA fragments are screened for sequence variability using a common mutation detection technique (single strand conformation polymorphism analysis; SSCP) and locus-specific PCR primers are designed for polymorphic DNA fragments. Detection of the markers by SSCP analysis coupled with sequence analysis of SSCP variants allows rapid screening while retaining information about the genealogical relationship among alleles. Variability detected for six markers was assessed in rainbow trout Oncorhynchus mykiss and was compared with variability detected by similar analysis of intron loci. Between three and 12 distinct alleles were observed at each marker locus, and average within-population heterozygosity ranged from 0.12 to 0.44. Advantages and limitations of the methodology for population genetic analysis are discussed.  相似文献   

15.
16.
Allozyme variation and population genetic structure of Betula alnoides Buch. Ham. ex D. Don in 11 natural populations from Guangxi Zhuang Autonomous Region, China, were investigated by starch gel electrophoresis. Variation at 15 loci from 10 enzyme systems was analyzed. Allozyme analysis revealed a high level of genetic variation in this species, with percentage of polymorphic loci (P p ), the average number of alleles per locus (A p ), and the expected heterozygosity (H ep ) being 55.2%, 2.0, and 0.204, respectively, which exceeds the average level among out-crossing wind-pollinated woody species at the population level. At the species level, P s , A s , and H es were 60.0%, 2.67, and 0.206, respectively.The observed heterozygosity (H op ) was higher than H ep , indicating the existence of natural selection against homozygotes. The negative fixation index (F = –0.216) implied a significant excess of heterozygosity at the population level. Among-population differentiation (F ST ) accounted for 4.0% of the total variation. No significant correlation was detected between the genetic distance and geographic distance among populations. Extensive gene flow was inferred, based on the allozyme data )N m = 6.000 from F ST , N m = 5.605 from the private allele method). The results demonstrated that the fragmentation status of B. alnoides had no remarkable effects on the population genetic structure of this species. Some populations are recommended for both in situ genetic conservation and germplasm collection for breeding programs.  相似文献   

17.
18.
Abstract In order to clarify the genetic diversity and population structure of Ranunculus japonicus , allozymic analysis was conducted on 60 populations in southwestern Japan. Considerable genetic variati ons were detected among the populations of R. japonicus . The genetic diversities within species ( H es = 0.215) and within populations ( H ep = 0.172) were slightly higher than those of other perennial herbs with widespread distribution and outcrossing plants. Significantly higher values of fixation index were detected in some populations, which might have arisen from restricted mating partners. The majority of genetic variation (approx. 80%) resided within a population and a moderate level of genetic differentiation ( G ST = 0.203) was observed among populations. The F ST value (0.203) suggests the existence of a substantial population structure in this species. The highly significant correlation between geographic distance and F ST values indicates that isolation by distance has played an important role in the construction of the genetic structure of this species.  相似文献   

19.
景观遗传学原理及其在生境片断化遗传效应研究中的应用   总被引:1,自引:0,他引:1  
沈泽昊  吉成均 《生态学报》2010,30(18):5066-5076
景观遗传学是近年来在景观生态学和种群遗传学之间形成的一个交叉领域,强调景观的组成、空间构型和环境梯度对基因流、种群遗传空间结构和局域种群适应的影响。景观遗传学尚未成为一门独立的学科,其理论基础主要来自分子遗传学、种群生物学和景观生态学。现代分子遗传标记技术、遥感和GIS支持下的景观分析和空间统计方法的综合运用是景观遗传学主要研究途径。系统介绍了景观遗传学的基础概念,关键科学问题,基本理论框架,及其与相邻研究领域的关系,综述了景观遗传学最为关注的现实课题——景观碎裂化的种群遗传效应的研究进展,主要涉及生境片断化的遗传效应、不同属性的物种响应、以及生境片断化过程的选择作用等方面。通过采取一种跨尺度的视角,景观遗传学研究显著深化了关于景观碎裂化对生物多样性影响的理解。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号