首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The eukaryotic translation initiation factor eIF4E plays a critical role in the control of translation initiation through binding to the mRNA 5′ cap structure. eIF4E is also a component of processing bodies and stress granules, which are two types of cytoplasmic RNA granule in which translationally inactivated mRNAs accumulate. We found that treatment with the Hsp90 inhibitor geldanamycin leads to a substantial reduction in the number of HeLa cells that contain processing bodies. In contrast, stress granules are not disrupted but seem to be only partially affected by the inhibition of Hsp90. However, it is striking that eIF4E as well as its binding partner eIF4E transporter (4E-T), which mediates the import of eIF4E into the nucleus, are obviously lost from stress granules. Furthermore, the amount of eIF4G that is associated with the cap via eIF4E is reduced by geldanamycin treatment. Thus, the chaperone activity of Hsp90 probably contributes to the correct localization of eIF4E and 4E-T to stress granules and also to the interaction between eIF4E and eIF4G, both of which may be needed for eIF4E to acquire the physiological functionality that underlies the mechanism of translation initiation.  相似文献   

3.
4.
5.
Modulation of interactions among proteins is an important mechanism for regulating both the subcellular location and the function of proteins. An example of the importance of protein-protein interaction is the reversible association of eukaryotic initiation factor eIF4E with the eIF4E binding proteins 4E-BP1 and eIF4G. When bound to 4E-BP1, eIF4E cannot bind to eIF4G to form the active eIF4F complex, an event that is required for the binding of mRNA to the ribosome. Thus, association of eIF4E with 4E-BP1 represses mRNA translation by preventing the binding of mRNA to the ribosome. Previous studies have measured the amount of 4E-BP1 or eIF4G bound to eIF4E by either affinity chromatography or immunoprecipitation of eIF4E followed by Western blot analysis for quantitation of 4E-BP1 and eIF4G. Both of these techniques have significant limitations. In the present study, we describe a microtiter plate-based assay for quantitation of the amount of 4E-BP1 and eIF4G bound to eIF4E that obviates many of the limitations of the earlier approaches. It also has the advantage that absolute amounts of the individual proteins can be easily estimated. The approach should be applicable to the study of a wide variety of protein-protein interactions.  相似文献   

6.
Eukaryotic initiation factor (eIF) 4E, the mRNA 5'-cap-binding protein, mediates the association of eIF4F with the mRNA 5'-cap structure to stimulate cap-dependent translation initiation in the cytoplasm. The assembly of eIF4E into the eIF4F complex is negatively regulated through a family of repressor proteins, called the eIF4E-binding proteins (4E-BPs). eIF4E is also present in the nucleus, where it is thought to stimulate nuclear-cytoplasmic transport of certain mRNAs. eIF4E is transported to the nucleus via its interaction with 4E-T (4E-transporter), but it is unclear how it is retained in the nucleus. Here we show that a sizable fraction (approximately 30%) of 4E-BP1 is localized to the nucleus, where it binds eIF4E. In mouse embryo fibroblasts (MEFs) subjected to serum starvation and/or rapamycin treatment, nuclear 4E-BPs sequester eIF4E in the nucleus. A dramatic loss of nuclear 4E-BP1 occurs in c-Ha-Ras-expressing MEFs, which fail to show starvation-induced nuclear accumulation of eIF4E. Therefore, 4E-BP1 is a regulator of eIF4E cellular localization.  相似文献   

7.
Assembly of the eIF4E/eIF4G complex has a central role in the regulation of gene expression at the level of translation initiation. This complex is regulated by the 4E-BPs, which compete with eIF4G for binding to eIF4E and which have tumor-suppressor activity. To pharmacologically mimic 4E-BP function we developed a high-throughput screening assay for identifying small-molecule inhibitors of the eIF4E/eIF4G interaction. The most potent compound identified, 4EGI-1, binds eIF4E, disrupts eIF4E/eIF4G association, and inhibits cap-dependent translation but not initiation factor-independent translation. While 4EGI-1 displaces eIF4G from eIF4E, it effectively enhances 4E-BP1 association both in vitro and in cells. 4EGI-1 inhibits cellular expression of oncogenic proteins encoded by weak mRNAs, exhibits activity against multiple cancer cell lines, and appears to have a preferential effect on transformed versus nontransformed cells. The identification of this compound provides a new tool for studying translational control and establishes a possible new strategy for cancer therapy.  相似文献   

8.
9.
The eIF4E are a family of initiation factors that bind the mRNA 5′ cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5′ TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have ‘moon-lighting’ functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote ‘stress resistance’ and adaptation.  相似文献   

10.
The eukaryotic cap-binding proteins belonging to the eIF4E family are generally involved in mediating the recruitment of ribosomes to capped mRNA. We described previously a cap-binding protein (now called eIF4E1) in Schizosaccharomyces pombe that appears to have all of the usual structural and functional attributes of an eIF4E. We have now characterised a new type of cap-binding protein (eIF4E2) from this organism, which at the amino acid sequence level, is 52% identical and 59% similar to eIF4E1. eIF4E2 is not essential in S.pombe but has some novel properties that may be related to a special function in the cell. The ratio of eIF4E2:eIF4E1 in the cell shifts in favour of eIF4E2 at higher temperatures. Despite having all of the dorsal face amino acids that have so far been associated with eIF4G binding to eIF4E1, eIF4E2 binds the eIF4E-binding domain of S.pombe eIF4G >102-times weaker than eIF4E1 in vitro. The eIF4E2 cap-binding affinity is in the typical micromolar range. The results suggest that eIF4E2 is not active on the main pathway of translation initiation in fission yeast but might play a role in the adaptation strategy of this organism under specific growth conditions. Moreover, they provide insight into the molecular characteristics required for tight binding to eIF4G.  相似文献   

11.

Background

The eukaryotic translation initiation factor eIF4E plays a key role in plant-potyvirus interactions. eIF4E belongs to a small multigenic family and three genes, eIF4E1, eIF4E2 and eIF(iso)4E, have been identified in tomato. It has been demonstrated that eIF4E-mediated natural recessive resistances against potyviruses result from non-synonymous mutations in an eIF4E protein, which impair its direct interaction with the potyviral protein VPg. In tomato, the role of eIF4E proteins in potyvirus resistance is still unclear because natural or induced mutations in eIF4E1 confer only a narrow resistance spectrum against potyviruses. This contrasts with the broad spectrum resistance identified in the natural diversity of tomato. These results suggest that more than one eIF4E protein form is involved in the observed broad spectrum resistance.

Methodology/Principal Findings

To gain insight into the respective contribution of each eIF4E protein in tomato-potyvirus interactions, two tomato lines silenced for both eIF4E1 and eIF4E2 (RNAi-4E) and two lines silenced for eIF(iso)4E (RNAi-iso4E) were obtained and characterized. RNAi-4E lines are slightly impaired in their growth and fertility, whereas no obvious growth defects were observed in RNAi-iso4E lines. The F1 hybrid between RNAi-4E and RNAi-iso4E lines presented a pronounced semi-dwarf phenotype. Interestingly, the RNAi-4E lines silenced for both eIF4E1 and eIF4E2 showed broad spectrum resistance to potyviruses while the RNAi-iso4E lines were fully susceptible to potyviruses. Yeast two-hybrid interaction assays between the three eIF4E proteins and a set of viral VPgs identified two types of VPgs: those that interacted only with eIF4E1 and those that interacted with either eIF4E1 or with eIF4E2.

Conclusion/Significance

These experiments provide evidence for the involvement of both eIF4E1 and eIF4E2 in broad spectrum resistance of tomato against potyviruses and suggest a role for eIF4E2 in tomato-potyvirus interactions.  相似文献   

12.
Eukaryotic translation initiation factor 4E (eIF4E) is the cap‐binding protein that binds the 5′ cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap‐dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin‐related modifier 1) conjugation. eIF4E sumoylation promotes the formation of the active eIF4F translation initiation complex and induces the translation of a subset of proteins that are essential for cell proliferation and preventing apoptosis. Furthermore, disruption of eIF4E sumoylation inhibits eIF4E‐dependent protein translation and abrogates the oncogenic and antiapoptotic functions associated with eIF4E. These data indicate that sumoylation is a new fundamental regulatory mechanism of protein synthesis. Our findings suggest further that eIF4E sumoylation might be important in promoting human cancers.  相似文献   

13.
14.
In this issue of Molecular Cell, Yanagiya et al. (2012) describe a regulatory mechanism that couples the abundance of the translational repressor 4E-BP1 with its target eIF4E via proteasomal degradation of 4E-BP1, thus maintaining translation in cells depleted of eIF4E.  相似文献   

15.
mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.  相似文献   

16.
The eukaryotic initiation factor 4G (eIF4G) is the core of a multicomponent switch controlling gene expression at the level of translation initiation. It interacts with the small ribosomal subunit interacting protein, eIF3, and the eIF4E/cap-mRNA complex in order to load the ribosome onto mRNA during cap-dependent translation. We describe the solution structure of the complex between yeast eIF4E/cap and eIF4G (393-490). Binding triggers a coupled folding transition of eIF4G (393-490) and the eIF4E N terminus resulting in a molecular bracelet whereby eIF4G (393-490) forms a right-handed helical ring that wraps around the N terminus of eIF4E. Cofolding allosterically enhances association of eIF4E with the cap and is required for maintenance of optimal growth and polysome distributions in vivo. Our data explain how mRNA, eIF4E, and eIF4G exists as a stable mRNP that may facilitate multiple rounds of ribosomal loading during translation initiation, a key determinant in the overall rate of protein synthesis.  相似文献   

17.
mRNP remodeling events required for the transition of an mRNA from active translation to degradation are currently poorly understood. We identified protein factors potentially involved in this transition, which are present in mammalian P bodies, cytoplasmic foci enriched in 5' --> 3' mRNA degrading enzymes. We demonstrate that human P bodies contain the cap-binding protein eIF4E and the related factor eIF4E-transporter (eIF4E-T), suggesting novel roles for these proteins in targeting mRNAs for 5' --> 3' degradation. Furthermore, fluorescence resonance energy transfer (FRET) studies indicate that eIF4E interacts with eIF4E-T and the putative DEAD box helicase rck/p54 in the P bodies in vivo. RNAi-mediated knockdowns revealed that a subset of P body factors, including eIF4E-T, LSm1, rck/p54, and Ccr4 are required for the accumulation of each other and eIF4E in P bodies. In addition, treatment of HeLa cells with cycloheximide, which inhibits translation, revealed that mRNA is also required for accumulation of mRNA degradation factors in P bodies. In contrast, knockdown of the decapping enzyme Dcp2, which initiates the actual 5' --> 3' mRNA degradation did not abolish P body formation, indicating it first functions after mRNPs have been targeted to these cytoplasmic foci. These data support a model in which mRNPs undergo several successive steps of remodeling and/or 3' trimming until their composition or structural organization promotes their accumulation in P bodies.  相似文献   

18.
The virus protein linked to the genome (VPg) of plant potyviruses is a 25-kDa protein covalently attached to the genomic RNA 5' end. It was previously reported that VPg binds specifically to eIF4E, the mRNAcap-binding protein of the eukaryotic translation initiation complex. We performed a spectroscopic study of the interactions between lettuce eIF4E and VPg from lettuce mosaic virus (LMV). The cap analogue m7GDP and VPg bind to eIF4E at two distinct sites with similar affinity (K(d) = 0.3 microm). A deeper examination of the interaction pathway showed that the binding of one ligand induces a decrease in the affinity for the other by a factor of 15. GST pull-down experiments from plant extracts revealed that VPg can specifically trap eIF4G, the central component of the complex required for the initiation of protein translation. Our data suggest that eIF4G recruitment by VPg is indirectly mediated through VPg-eIF4E association. The strength of interaction between eIF4E and pep4G, the eIF4E-binding domain on eIF4G, was increased significantly by VPg. Taken together these quantitative data show that VPg is an efficient modulator of eIF4E biochemical functions.  相似文献   

19.
Feeding promotes protein accretion in skeletal muscle through a stimulation of the mRNA translation initiation phase of protein synthesis either secondarily to nutrient-induced rises in insulin or owing to direct effects of nutrients themselves. The present set of experiments establishes the effects of meal feeding on potential signal transduction pathways that may be important in accelerating mRNA translation initiation. Gastrocnemius muscle from male Sprague-Dawley rats trained to consume a meal consisting of rat chow was sampled before, during, and after the meal. Meal feeding enhanced the assembly of the active eIF4G.eIF4E complex, which returned to basal levels within 3 h of removal of food. The increased assembly of the active eIF4G.eIF4E complex was associated with a marked 10-fold rise in phosphorylation of eIF4G(Ser(1108)) and a decreased assembly of inactive 4E-BP1.eIF4E complex. The reduced assembly of 4E-BP1.eIF4E complex was associated with a 75-fold increase in phosphorylation of 4E-BP1 in the gamma-form during feeding. Phosphorylation of S6K1 on Ser(789) was increased by meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of mammalian target of rapamycin (mTOR) on Ser(2448) or Ser(2481), an upstream kinase responsible for phosphorylating both S6K1 and 4E-BP1, was increased at all times during meal feeding, although the extent of phosphorylation was greater at 0.5 h after feeding than after 1 h. Phosphorylation of PKB, an upstream kinase responsible for phosphorylating mTOR, was elevated only after 0.5 h of meal feeding for Thr(308), whereas phosphorylation Ser(473) was significantly elevated at only 0.5 and 1 h after initiation of feeding. We conclude from these studies that meal feeding stimulates two signal pathways in skeletal muscle that lead to elevated eIF4G.eIF4E complex assembly through increased phosphorylation of eIF4G and decreased association of 4E-BP1 with eIF4E.  相似文献   

20.
This commentary discusses the recent reports in RNA by Yan and colleagues and Westman and colleagues of the apparent failure of ribavirin to bind to recombinant eIF4E and inhibit 7-methyl guanosine cap-dependent exogenous mRNA translation of cell extracts in vitro. Measuring binding by using affinity chromatography of matrix-immobilized proteins and by using protein emission fluorescence spectroscopy in the presence of nucleotide ligands, as well as limitations of using cell extracts for the assessment of mechanisms of mRNA translation are discussed. Possible reasons for the discordant findings of Yan and colleagues and Westman and colleagues are suggested, and direct observation of the specific binding of ribavirin to eIF4E by using mass spectrometry is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号