共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of eukaryotic translation initiation factor 4E (eIF4E) to eIF4G represses translation of uncapped mRNA. 总被引:2,自引:1,他引:2
下载免费PDF全文

mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell. 相似文献
2.
A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. 总被引:10,自引:1,他引:10
In the yeast Saccharomyces cerevisiae a small protein named p20 is found associated with translation initiation factor eIF4E, the mRNA cap-binding protein. We demonstrate here that p20 is a repressor of cap-dependent translation initiation. p20 shows amino acid sequence homology to a region of eIF4G, the large subunit of the cap-binding protein complex eIF4F, which carries the binding site for eIF4E. Both, eIF4G and p20 bind to eIF4E and compete with each other for binding to eIF4E. The eIF4E-p20 complex can bind to the cap structure and inhibit cap-dependent but not cap-independent translation initiation: the translation of a mRNA with the 67 nucleotide omega sequence of tobacco mosaic virus in its 5' untranslated region (which was previously shown to render translation cap-independent) is not inhibited by p20. Whereas the translation of the same mRNA lacking the omega sequence is strongly inhibited by p20. Disruption of CAF20, the gene encoding p20, stimulates the growth of yeast cells, overexpression of p20 causes slower growth of yeast cells. These results show that p20 is a regulator of eIF4E activity which represses cap-dependent initiation of translation by interfering with the interaction of eIF4E with eIF4G, e.g. the formation of the eIF4F-complex. 相似文献
3.
The mRNA cap structure is bound by either the nuclear (CBC) or the cytoplasmic (eIF4F) cap binding complex. Following mRNA export, CBC must be exchanged for eIF4F in the cytoplasm. It is not known how this exchange occurs or how this RNP remodeling event is integrated with mRNA function. Here we report genetic and biochemical evidence that the yeast translation initiation factor eIF4G associates with CBC, and that eIF4E, the eIF4F component that binds both the cap and eIF4G, antagonizes this interaction. Furthermore, we find that CBC can stimulate translation in extracts containing an eIF4G protein deficient for eIF4E binding. These data suggest that eIF4E binding to the eIF4G-CBC complex on newly exported mRNA displaces CBC, and that the first round of translation on mRNA may occur via a different mechanism than subsequent rounds. 相似文献
4.
Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. 总被引:31,自引:5,他引:31
下载免费PDF全文

S Pyronnet H Imataka A C Gingras R Fukunaga T Hunter N Sonenberg 《The EMBO journal》1999,18(1):270-279
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1. 相似文献
5.
Modulation of interactions among proteins is an important mechanism for regulating both the subcellular location and the function of proteins. An example of the importance of protein-protein interaction is the reversible association of eukaryotic initiation factor eIF4E with the eIF4E binding proteins 4E-BP1 and eIF4G. When bound to 4E-BP1, eIF4E cannot bind to eIF4G to form the active eIF4F complex, an event that is required for the binding of mRNA to the ribosome. Thus, association of eIF4E with 4E-BP1 represses mRNA translation by preventing the binding of mRNA to the ribosome. Previous studies have measured the amount of 4E-BP1 or eIF4G bound to eIF4E by either affinity chromatography or immunoprecipitation of eIF4E followed by Western blot analysis for quantitation of 4E-BP1 and eIF4G. Both of these techniques have significant limitations. In the present study, we describe a microtiter plate-based assay for quantitation of the amount of 4E-BP1 and eIF4G bound to eIF4E that obviates many of the limitations of the earlier approaches. It also has the advantage that absolute amounts of the individual proteins can be easily estimated. The approach should be applicable to the study of a wide variety of protein-protein interactions. 相似文献
6.
Moerke NJ Aktas H Chen H Cantel S Reibarkh MY Fahmy A Gross JD Degterev A Yuan J Chorev M Halperin JA Wagner G 《Cell》2007,128(2):257-267
Assembly of the eIF4E/eIF4G complex has a central role in the regulation of gene expression at the level of translation initiation. This complex is regulated by the 4E-BPs, which compete with eIF4G for binding to eIF4E and which have tumor-suppressor activity. To pharmacologically mimic 4E-BP function we developed a high-throughput screening assay for identifying small-molecule inhibitors of the eIF4E/eIF4G interaction. The most potent compound identified, 4EGI-1, binds eIF4E, disrupts eIF4E/eIF4G association, and inhibits cap-dependent translation but not initiation factor-independent translation. While 4EGI-1 displaces eIF4G from eIF4E, it effectively enhances 4E-BP1 association both in vitro and in cells. 4EGI-1 inhibits cellular expression of oncogenic proteins encoded by weak mRNAs, exhibits activity against multiple cancer cell lines, and appears to have a preferential effect on transformed versus nontransformed cells. The identification of this compound provides a new tool for studying translational control and establishes a possible new strategy for cancer therapy. 相似文献
7.
Hershey PE McWhirter SM Gross JD Wagner G Alber T Sachs AB 《The Journal of biological chemistry》1999,274(30):21297-21304
The association of eucaryotic translation initiation factor eIF4G with the cap-binding protein eIF4E establishes a critical link between the mRNA and the ribosome during translation initiation. This association requires a conserved seven amino acid peptide within eIF4G that binds to eIF4E. Here we report that a 98-amino acid fragment of S. cerevisiae eIF4G1 that contains this eIF4E binding peptide undergoes an unfolded to folded transition upon binding to eIF4E. The folding of the eIF4G1 domain was evidenced by the eIF4E-dependent changes in its protease sensitivity and (1)H-(15)N HSQC NMR spectrum. Analysis of a series of charge-to-alanine mutations throughout the essential 55.4-kDa core of yeast eIF4G1 also revealed substitutions within this 98-amino acid region that led to reduced eIF4E binding in vivo and in vitro. These data suggest that the association of yeast eIF4E with eIF4G1 leads to the formation of a structured domain within eIF4G1 that could serve as a specific site for interactions with other components of the translational apparatus. They also suggest that the stability of the native eIF4E-eIF4G complex is determined by amino acid residues outside of the conserved seven-residue consensus sequence. 相似文献
8.
Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae.
D Dominguez M Altmann J Benz U Baumann H Trachsel 《The Journal of biological chemistry》1999,274(38):26720-26726
Eukaryotic initiation factor (eIF) 4A is an essential protein that, in conjunction with eIF4B, catalyzes the ATP-dependent melting of RNA secondary structure in the 5'-untranslated region of mRNA during translation initiation. In higher eukaryotes, eIF4A is assumed to be recruited to the mRNA through its interaction with eIF4G. However, the failure to detect this interaction in yeast brought into question the generality of this model. The work presented here demonstrates that yeast eIF4G interacts with eIF4A both in vivo and in vitro. The eIF4A-binding site was mapped to amino acids 542-883 of yeast eIF4G1. Expression in yeast cells of the eIF4G1 domain that binds eIF4A results in cell growth inhibition, and addition of this domain to an eIF4A-dependent in vitro system inhibits translation in a dose-dependent manner. Both in vitro translation and cell growth can be specifically restored by increasing the eIF4A concentration. These data demonstrate that yeast eIF4A and eIF4G interact and suggest that this interaction is required for translation and cell growth. 相似文献
9.
Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. 总被引:20,自引:12,他引:20
下载免费PDF全文

Mammalian translation initiation factor 4F (eIF4F) consists of three subunits, eIF4A, eIF4E, and eIF4G. eIF4G interacts directly with both eIF4A and eIF4E. The binding site for eIF4E is contained in the amino-terminal third of eIF4G, while the binding site for eIF4A was mapped to the carboxy-terminal third of the molecule. Here we show that human eIF4G possesses two separate eIF4A binding domains in the middle third (amino acids [aa] 478 to 883) and carboxy-terminal third (aa 884 to 1404) of the molecule. The amino acid sequence of the middle portion of eIF4G is well conserved between yeasts and humans. We show that mutations of conserved amino acid stretches in the middle domain abolish or reduce eIF4A binding as well as eIF3 binding. In addition, a separate and nonoverlapping eIF4A binding domain exists in the carboxy-terminal third (aa 1045 to 1404) of eIF4G, which is not present in yeast. The C-terminal two-thirds region (aa 457 to 1404) of eIF4G, containing both eIF4A binding sites, is required for stimulating translation. Neither one of the eIF4A binding domains alone activates translation. In contrast to eIF4G, human p97, a translation inhibitor with homology to eIF4G, binds eIF4A only through the amino-terminal proximal region, which is homologous to the middle domain of eIF4G. 相似文献
10.
Translation of mRNA in eukaryotes begins with specific recognition of the 5' cap structure by the highly conserved protein, eIF4E. The thermodynamics of eIF4E interaction with nine chemical cap analogues has been studied by means of emission spectroscopy. High-sensitivity measurements of intrinsic protein fluorescence quenching upon cap binding provided equilibrium association constants in the temperature range of 279 to 314 K. A van't Hoff analysis yielded the negative binding enthalpies for the entire cap analogue series, -16.6 to -81 kJ mol(-1), and the entropies covering the range of +40.3 to -136 J mol(-1) K(-1) at 293 K. The main enthalpic contributions come from interactions of the phosphate chains and positively charged amino acids and the cation-pi stacking of 7-methylguanine with tryptophans. A nontrivial, statistically important isothermal enthalpy-entropy compensation has been detected (T(c) = 399 +/- 24 K), which points to significant fluctuations of apo-eIF4E and indicates that the cap-binding microstate lies 9.66 +/- 1.7 kJ mol(-1) below the mean energy of all available conformational states. For five cap analogues, large and positive heat capacity changes have been found. The values of DeltaC(p) degrees correlate with the free energies of eIF4E binding due to stiffening of the protein upon interaction with cap analogues. At biological temperatures, binding of the natural caps has both favorable enthalpy and favorable entropy. Thermodynamic coupling of cap-eIF4E association to intramolecular self-stacking of dinucleotide cap analogues strongly influences the enthalpies and entropies of the binding, but has a negligible effect on the resultant DeltaG degrees and DeltaC(p) degrees values. 相似文献
11.
The conserved RNA helicase DDX3 is of major medical importance due to its involvement in numerous cancers, human hepatitis C virus (HCV) and HIV. Although DDX3 has been reported to have a wide variety of cellular functions, its precise role remains obscure. Here, we raised a new antibody to DDX3 and used it to show that DDX3 is evenly distributed throughout the cytoplasm at steady state. Consistent with this observation, HA-tagged DDX3 also localizes to the cytoplasm. RNAi of DDX3 in both human and Drosophila cells shows that DDX3 is required for cell viability. Moreover, using RNAi, we show that DDX3 is required for expression of protein from reporter constructs. In contrast, we did not detect a role for DDX3 in nuclear steps in gene expression. Further insight into the function of DDX3 came from the observation that its major interaction partner is the multi-component translation initiation factor eIF3. We conclude that a primary function for DDX3 is in protein translation, via an interaction with eIF3. 相似文献
12.
Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation
下载免费PDF全文

Mammalian eukaryotic initiation factor 4GI (eIF4GI) may be divided into three similarly sized regions. The central region (amino acids [aa] 613 to 1090) binds eIF3, eIF4A, and the encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES) and mediates initiation on this RNA. We identified the regions of eIF4GI that are responsible for its specific interaction with the IRES and that are required to mediate 48S complex formation on the IRES in vitro. Mutational analysis demarcated the IRES binding fragment of eIF4GI (aa 746 to 949) and indicated that it does not resemble an RNA recognition motif (RRM)-like domain. An additional amino-terminal sequence (aa 722 to 746) was required for binding eIF4A and for 48S complex formation. eIF4GI bound the EMCV IRES and beta-globin mRNA with similar affinities, but association with eIF4A increased its affinity for the EMCV IRES (but not beta-globin RNA) by 2 orders of magnitude. On the other hand, eIF4GI mutants with defects in binding eIF4A were defective in mediating 48S complex formation even if they bound the IRES normally. These data indicate that the eIF4G-eIF4A complex, rather than eIF4G alone, is required for specific high-affinity binding to the EMCV IRES and for internal ribosomal entry on this RNA. 相似文献
13.
Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G 总被引:5,自引:0,他引:5
The eukaryotic cap-binding complex eIF4F is an essential component of the translational machinery. Recognition of the mRNA cap structure through its subunit eIF4E is a requirement for the recruitment of other translation initiation factors to the mRNA 5'-end and thereby for the attachment of the 40 S ribosomal subunit. In this study, we have investigated the mechanistic basis of the observation that eIF4E binding to the cap is enhanced in the presence of the large eIF4F subunit, eIF4G. We show that eIF4E requires access to both the mRNA 5'-cap and eIF4G to form stable complexes with short RNAs. This stabilization can be achieved using fragments of eIF4G that contain the eIF4E binding site but not the RNA recognition motifs. Full-length eIF4G is shown to induce increased eIF4E binding to cap analogues that do not contain an RNA body. Both results show that interaction of eIF4G with the mRNA is not necessary to enhance cap binding by eIF4E. Moreover, we show that the effect of binding of full-length eIF4G on the cap affinity of eIF4E can be further modulated through binding of Pab1 to eIF4G. These data are consistent with a model in which heterotropic cooperativity underlies eIF4F function. 相似文献
14.
The electrostatic free energy of binding of two analogues of the 5′-mRNA cap, differing in size and electric charge, to the wild type and mutated eukaryotic initiation factor eIF4E was computed using the finite difference solutions to the Poisson–Boltzmann equation. Two definitions of the solute–solvent dielectric boundary were used: van der Waals model, solvent exclusion (SE) model. The computed electrostatic energies were supplemented by estimations of the non polar and entropic contributions. A comparison with experimental data for the investigated systems was done. It appears that the SE model with additional contribution fits experimental findings better than the van der Waals model does. 相似文献
15.
Kentsis A Dwyer EC Perez JM Sharma M Chen A Pan ZQ Borden KL 《Journal of molecular biology》2001,312(4):609-623
The promyelocytic leukemia protein (PML) is a mammalian regulator of cell growth which is characteristically disrupted in acute promyelocytic leukemia and by a variety of viruses. PML contains a RING domain which is required for its growth-suppressive and antiviral properties. Although normally nuclear, in certain pathogenic conditions, including arenaviral infection, PML is relocated to the cytoplasm, where its functions are poorly understood. Here, we observe that PML and arenavirus protein Z use regions around the first zinc-binding site of their respective RING domains to directly interact, with sub-micromolar affinity, with the dorsal surface of translation initiation factor eIF4E, representing a novel mode of eIF4E recognition. PML and Z profoundly reduce the affinity of eIF4E for its substrate, the 5' 7-methyl guanosine cap of mRNA, by over 100-fold. Association with the dorsal surface of eIF4E and direct antagonism of mRNA cap binding by PML and Z lead to direct inhibition of translation. These activities of the RING domains of PML and Z do not involve ubiquitin-mediated protein degradation, in contrast to many RINGs which have been observed to do so. Although PML and Z have well characterized physiological functions in regulation of growth and apoptosis, this work establishes the first discrete biochemical mechanism which underlies the biological activities of their RING domains. Thus, we establish PML and Z as translational repressors, with potential contributions to the pathogenesis of acute promyelocytic leukemia and variety of viral infections. 相似文献
16.
Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1 总被引:5,自引:0,他引:5
Korneeva NL Lamphear BJ Hennigan FL Rhoads RE 《The Journal of biological chemistry》2000,275(52):41369-41376
Eukaryotic translation initiation factor 4G-1 (eIF4G) plays a critical role in the recruitment of mRNA to the 43 S preinitiation complex. The central region of eIF4G binds the ATP-dependent RNA helicase eIF4A, the 40 S binding factor eIF3, and RNA. In the present work, we have further characterized the binding properties of the central region of human eIF4G. Both titration and competition experiments were consistent with a 1:1 stoichiometry for eIF3 binding. Surface plasmon resonance studies showed that three recombinant eIF4G fragments corresponding to amino acids 642-1560, 613-1078, and 975-1078 bound eIF3 with similar kinetics. A dissociation equilibrium constant of approximately 42 nm was derived from an association rate constant of 3.9 x 10(4) m(-1) s(-1) and dissociation rate constant of 1.5 x 10(-3) s(-1). Thus, the eIF3-binding region is included within amino acid residues 975-1078. This region does not overlap with the RNA-binding site, which suggests that eIF3 binds eIF4G directly and not through an RNA bridge, or the central eIF4A-binding site. Surprisingly, the binding of eIF3 and eIF4A to the central region was mutually cooperative; eIF3 binding to eIF4G increased 4-fold in the presence of eIF4A, and conversely, eIF4A binding to the central (but not COOH-terminal) region of eIF4G increased 2.4-fold in the presence of eIF3. 相似文献
17.
Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G
下载免费PDF全文

The question of whether translation initiation factor eIF4E and the complete eIF4G polypeptide are required for initiation dependent on the IRES (internal ribosome entry site) of hepatitis A virus (HAV) has been examined using in vitro translation in standard and eIF4G-depleted rabbit reticulocyte lysates. In agreement with previous publications, the HAV IRES is unique among all picornavirus IRESs in that it was inhibited if translation initiation factor eIF4G was cleaved by foot-and-mouth disease L-proteases. In addition, the HAV IRES was inhibited by addition of eIF4E-binding protein 1, which binds tightly to eIF4E and sequesters it, thus preventing its association with eIF4G. The HAV IRES was also inhibited by addition of m(7)GpppG cap analogue, irrespective of whether the RNA tested was capped or not. Thus, initiation on the HAV IRES requires that eIF4E be associated with eIF4G and that the cap-binding pocket of eIF4E be empty and unoccupied. This suggests two alternative models: (i) initiation requires a direct interaction between an internal site in the IRES and eIF4E/4G, an interaction which involves the cap-binding pocket of eIF4E in addition to any direct eIF4G-RNA interactions; or (ii) it requires eIF4G in a particular conformation which can be attained only if eIF4E is bound to it, with the cap-binding pocket of the eIF4E unoccupied. 相似文献
18.
High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation 总被引:2,自引:0,他引:2
The eukaryotic translation initiation factor 4F (eIF4F) consists of three polypeptides (eIF4A, eIF4G, and eIF4E) and is responsible for recruiting ribosomes to mRNA. eIF4E recognizes the mRNA 5'-cap structure (m7GpppN) and plays a pivotal role in control of translation initiation, which is the rate-limiting step in translation. Overexpression of eIF4E has a dramatic effect on cell growth and leads to oncogenic transformation. Therefore, an inhibitory agent to eIF4E, if any, might serve as a novel therapeutic against malignancies that are caused by aberrant translational control. Along these lines, we developed two RNA aptamers, aptamer 1 and aptamer 2, with high affinity for mammalian eIF4E by in vitro RNA selection-amplification. Aptamer 1 inhibits the cap binding to eIF4E more efficiently than the cap analog m7GpppN or aptamer 2. Consistently, aptamer 1 inhibits specifically cap-dependent in vitro translation while it does not inhibit cap-independent HCV IRES-directed translation initiation. The interaction between eIF4E and eIF4E-binding protein 1 (4E-BP1), however, was not inhibited by aptamer 1. Aptamer 1 is composed of 86 nucleotides, and the high affinity to eIF4E is affected by deletions at both termini. Moreover, relatively large areas in the aptamer 1 fold are protected by eIF4E as determined by ribonuclease footprinting. These findings indicate that aptamers can achieve high affinity to a specific target protein via global conformational recognition. The genetic mutation and affinity study of variant eIF4E proteins suggests that aptamer 1 binds to eIF4E adjacent to the entrance of the cap-binding slot and blocks the cap-binding pocket, thereby inhibiting translation initiation. 相似文献
19.
The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection
下载免费PDF全文

He H von der Haar T Singh CR Ii M Li B Hinnebusch AG McCarthy JE Asano K 《Molecular and cellular biology》2003,23(15):5431-5445
Eukaryotic initiation factor 4G (eIF4G) promotes mRNA recruitment to the ribosome by binding to the mRNA cap- and poly(A) tail-binding proteins eIF4E and Pap1p. eIF4G also binds eIF4A at a distinct HEAT domain composed of five stacks of antiparallel alpha-helices. The role of eIF4G in the later steps of initiation, such as scanning and AUG recognition, has not been defined. Here we show that the entire HEAT domain and flanking residues of Saccharomyces cerevisiae eIF4G2 are required for the optimal interaction with the AUG recognition factors eIF5 and eIF1. eIF1 binds simultaneously to eIF4G and eIF3c in vitro, as shown previously for the C-terminal domain of eIF5. In vivo, co-overexpression of eIF1 or eIF5 reverses the genetic suppression of an eIF4G HEAT domain Ts(-) mutation by eIF4A overexpression. In addition, excess eIF1 inhibits growth of a second eIF4G mutant defective in eIF4E binding, which was also reversed by co-overexpression of eIF4A. Interestingly, excess eIF1 carrying the sui1-1 mutation, known to relax the accuracy of start site selection, did not inhibit the growth of the eIF4G mutant, and sui1-1 reduced the interaction between eIF4G and eIF1 in vitro. Moreover, a HEAT domain mutation altering eIF4G moderately enhances translation from a non-AUG codon. These results strongly suggest that the binding of the eIF4G HEAT domain to eIF1 and eIF5 is important for maintaining the integrity of the scanning ribosomal preinitiation complex. 相似文献
20.
TRIM22 (Staf50), a member of the TRIM protein family, is an interferon (IFN)-inducible protein as well as a p53 target gene. The function of TRIM22 is largely unknown, but TRIM22 is suggested to play a role in viral defense by restriction of viral replication. In addition, TRIM22 may function as a ubiquitin E3 ligase. In contrast to previous reports showing solely cytoplasmic localization of exogenous TRIM22, we report here that endogenous TRIM22 is localized to both nucleus and cytosol in primary human mononuclear cells, as well as in the human osteosarcoma cell line U2OS. Moreover, we demonstrate a colocalization of TRIM22 with the centrosomes in primary cells as well as in U2OS cells, and show that this colocalization is independent of cell cycle phase. Additionally, our data suggest the colocalization with centrosomes to be independent on the microtubule network. Given that some viral protein assembly takes place in the close vicinity of the centrosome, our data suggest that important functions of TRIM22 such as regulation of viral replication and protein degradation may take place in the centrosome. However, further studies are warranted to certify this notion. 相似文献