首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(7):891-902
Abstract

The breakdown of lycopene in the presence of reactive oxygen and reactive nitrogen species has been studied in order to identify key in vitro intermediates. These compounds may in turn be produced as metabolites in the body and may have significant physiological properties, such as increased antioxidant capacity. We have studied the in vitro degradation of lycopene in solvent, in plasma and in low density lipoprotein, when challenged with freshly generated gaseous cigarette smoke or free radicals generated in situ by S-morpholinosydonimine at 37°C. The emphasis has been to establish the major intermediates and to compare the data with previous studies using different reactants. We have found that (13Z)-lycopene is the major intermediate in both cigarette smoke and S-morpholinosydonimine reactions (representing ≥60% of the converted (all-E)-lycopene at ~50% depletion). Additionally, (9Z)-lycopene and various (all-E) and (Z)-lycopene epoxides were predominant. Notably, (5Z)-lycopene appeared to be the most stable form of lycopene under the stated conditions. Previous theoretical studies of isomer thermodynamics and rotational energy barriers for carbon double bonds fully support the pattern of isomer production and stability. In contrast to β-carotene studies, nitro-derivatives of lycopene could not be detected. In conclusion, (Z)-lycopene production and (5Z)-lycopene stability may help explain elevated (Z)-lycopene in plasma over (Z)-lycopene content in lycopene-containing foods in the diet.  相似文献   

2.
An efficient purification of synthetic all-trans (all-E) lycophyll is described. The synthetic preparation of the rare xanthophyll lycophyll produces a mixture of geometric isomers. Purification by HPLC using reverse-phase C30 silica affords milligram quantities of the desired all-trans isomer in >95% purity, as confirmed by (1)H NMR and LC/MS. Most recently, a facile work-up of the geometric mixture formed during total synthesis was found to provide multigrams of the targeted all-E geometric isomer of lycophyll. The acquisition of modest quantities of this specific lycopene analog allows its therapeutic potential to be explored.  相似文献   

3.
We investigated a novel method for the selective separation of beta-carotene isomers from a freeze-dried powder of the algae Dunaliella bardawil using supercritical fluid extraction. The separation method relies on the different dissolution rate of the 9Z and all-E isomers of beta-carotene in SC-CO(2). At first, the equilibrium solubility of the two isomers in SC-CO(2) was determined at the extraction conditions of 44.8 MPa and 40 degrees C. The solubility of the 9Z isomer was found to be nearly 4 times higher than that of the all-E isomer (1.92 x 10(-5) g all-E isomer/g CO(2) compared to 7.64 x 10(-5) g 9Z isomer/g CO(2)). When supercritical fluid extraction was applied to a carotenoid concentrate from the algae (29 wt% beta-carotene) or a freeze-dried powder of the algae (3.1% beta-carotene), a selective separation of the 9Z/all-E isomers of beta-carotene was obtained. Thirty-nine percent recovery of beta-carotene with 80% purity of 9Z isomer was achieved at the initial stages of extraction (40 mL CO(2)). The extraction rate of beta-carotene from the freeze-dried algae powder was slower than that from the carotenoid concentrate, resulting in a reduction in the recovery and purity of the 9Z isomer. This indicates that even at the initial stage of the extraction the internal mass resistance is significant. Isomer purity and recovery could be enhanced upon grinding of the algae powder.  相似文献   

4.
The clinical literature strongly suggests that bone healing in cigarette smokers is impaired. Since cigarette smoke (CS) contains numerous polycyclic aromatic hydrocarbons (PAHs), and since dioxins impair bone formation in vivo via the Aryl Hydrocarbon Receptor (AHR), we investigated the impact of PAH/AHR signaling on chondrogenesis and on healing in a mouse tibial fracture model. We established that CS activates AHR signaling in fractures by up-regulating the AHR target gene cytochrome p4501A1 (Cyp1A1). For in vitro studies, we employed the mouse limb bud micromass chondrogenesis model. After confirming that chondrocytes express AHR during differentiation, we treated cells with a prototypical PAH found in CS, benzo(a)pyrene (BaP), or cigarette smoke extract (CSE). Both BaP and CSE strongly inhibited chondrogenesis in mesenchymal cells generated from E11 limb buds, with BaP also accelerating chondrocyte hypertrophy in cultures generated from E12 limb buds. Detection of DNA adducts in the BaP-treated cultures suggests that the distinct phenotypic effects of BaP may be due to the formation of reactive metabolites. Blockade of AHR signaling with the AHR antagonist MNF reverses the effects of BaP, but not CSE, suggesting that CSE inhibition of chondrogenesis is AHR-independent. Correlating with these results, tibial fracture calluses from BaP-treated mice were smaller and contained less mineralized tissue than vehicle controls. Overall, BaP is identified as a potent inhibitor of chondrogenesis in vitro with correlated effects on fracture healing similar to those of CS itself, suggesting a basis for PAHs as key compounds in the influence of CS on fracture repair.  相似文献   

5.
The stability to autoxidation of the polar carotenoids, lutein and zeaxanthin, was compared to that of the less polar carotenoids, beta-carotene and lycopene at physiologically or pathophysiologically relevant concentrations of 2 and 6 microM, after exposure to heat or cigarette smoke. Three methodological approaches were used: 1) Carotenoids dissolved in solvents with different polarities were incubated at 37 and 80 degrees C for different times. 2) Human plasma samples were subjected to the same temperature conditions. 3) Methanolic carotenoid solutions and plasma were also exposed to whole tobacco smoke from 1-5 unfiltered cigarettes. The concentrations of individual carotenoids in different solvents were determined spectrophotometrically. Carotenoids from plasma were extracted and analyzed using high performance liquid chromatography. Carotenoids were generally more stable at 37 than at 80 degrees C. In methanol and dichloromethane the thermal degradation of beta-carotene and lycopene was faster than that of lutein and zeaxanthin. However, in tetrahydrofuran beta-carotene and zeaxanthin degraded faster than lycopene and lutein. Plasma carotenoid levels at 37 degrees C did not change, but decreased at 80 degrees C. The decrease of beta-carotene and lycopene levels was higher than those for lutein and zeaxanthin. Also in the tobacco smoke experiments the highest autoxidation rates were found for beta-carotene and lycopene at 2 microM, but at 6 microM lutein and zeaxanthin depleted to the same extent as beta-carotene. These data support our previous studies suggesting that oxidative stress degrade beta-carotene and lycopene faster than lutein and zeaxanthin. The only exception was the thermal degradation of carotenoids solubilized in tetrahydrofuran, which favors faster breakdown of beta-carotene and zeaxanthin.  相似文献   

6.
9'Z-(3S,5R,6R,3'S,5'R,6'S)-Neoxanthin reisolated from spinach (Spinacea oleracea) and characterized by HPLC, VIS, MS, and 2D (1)H NMR, has been submitted to photoinduced stereomutation in the presence of iodine or diphenyl diselenide at conditions not involving isomerization of the allenic bond. The six individual geometrical isomers, all-E,9Z,9'Z,13Z,13'Z,15Z and three minor di-Z-isomers, presumably 9,9'-di-Z,9',13-di-Z and 9',13'-di-Z, present in the equilibrium mixture have been characterized by HPLC, VIS data, 1H NMR and reversibility tests. Judged by the quantitative composition of the equilibrium mixture the naturally occurring 9'Z-isomer is thermodynamically less stable than the all-E-isomer. The availability of these isomers facilitates future search in natural sources. 9'Z-(6R90% of total neoxanthin in spinach and broccoli (Brassica oleracea var. italica), consistent with previous findings of its abundance in chloroplasts. all-E90% of total violaxanthin in the same sources. It is postulated that a neoxanthin Delta9'-isomerase is present and involved in the biosynthesis of abscisic acid in higher plants. Allenic S-isomers are of interest as postulated biosynthetic precursors of R-allenes. All-E-(6S)- and 9'Z-(6S)-neoxanthin were available as semi-synthetic model compounds. The allenic (6S)-diastereomers could not be detected in spinach or broccoli.  相似文献   

7.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a carcinogenic compound of cigarette smoke that generates electrophilic intermediates capable of damaging DNA. Recently, we have shown that NNK can modulate mediator production by alveolar macrophages (AM) and bronchial and alveolar epithelial cells, suggesting that cigarette smoke can alter lung immune response. Thus, we investigated the effect of NNK and cigarette smoke extract (CSE) on AM capacity to eliminate tumoral cells. Rat AM cell line, NR8383, was treated with NNK (500 μM) or CSE (3%) and stimulated with lipopolysaccharide (10 ng/ml). The release of cytotoxic mediators, tumor necrosis factor (TNF) and reactive oxygen species (ROS), was measured in cell-free supernatants using ELISA and superoxide anion production. TNF- and ROS-dependent cytotoxicity were studied using a 51Chromium-release assay and WEHI-164 and P-815 cell lines. Treatment of AM with NNK and CSE for 18 h significantly inhibited AM TNF release. CSE exposure resulted in a significant increase of ROS production, whereas NNK did not. TNF-dependent cytotoxic activity of NR8383 and freshly isolated rat AM was significantly inhibited after treatment with NNK and CSE. Interestingly, although ROS production was stimulated by CSE and not affected by NNK, CSE inhibited AM ROS-dependent cytotoxicity. These results suggest that NNK may be one of the cigarette smoke components responsible for the reduction of pulmonary cytotoxicity. Thus, NNK may have a double pro-carcinogenic effect by contributing to DNA adduct formation and inhibiting AM cytotoxicity against tumoral cells.  相似文献   

8.
Conjugated linoleic acid (CLA) isomers are present in human foods derived from milk or ruminant meat. To study their metabolism, (9Z,11E)-, (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadecadienoic acids with high radiochemical and isomeric purities (>98%) were prepared by stereoselective multi-step syntheses involving sequential substitution of 1,2-dichloro-ethene. In the case of the (9Z,11E) isomer, a first metal-catalyzed cross-coupling reaction between (E)-1,2-dichloro-ethene and 2-non-8-ynyloxy-tetrahydro-pyran, obtained from 7-bromo-heptan-1-ol, gave a conjugated chloroenyne. A second coupling reaction with hexylmagnesium bromide provided a heptadecenynyl derivative. Stereoselective reduction of the triple bond and bromination afforded (7E,9Z)-17-bromo-heptadeca-7,9-diene. Formation of the Grignard reagent and carbonation with 14CO(2) gave (9Z,11E)-[1-(14)C]-octadeca-9,11-dienoic acid (overall yield from 7-bromo-heptan-1-ol, 14.4%). (10E,12Z)- and (10Z,12Z)-[1-(14)C]-octadeca-10,12-dienoic acids were synthesized by the same methodology using 1-heptyne, 8-bromo-octan-1-ol and, respectively, (E)-1,2-dichloro-ethene and its (Z) isomer (overall yield from 8-bromo-octan-1-ol, 13.1% (10E,12Z); 17.2% (10Z,12Z)). Impurities (<2% if present) were identified as being (E,E) CLA isomers and were removed by RP-HPLC. Metabolism studies in animal are in progress.  相似文献   

9.
Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking (5,6,7,12). Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens(9,10). Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung(3). Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke(4). A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke(14). However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine(8). In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy(1,2,14). We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine industry respectively(11,13).  相似文献   

10.
The present study was undertaken to examine whether lycopene is able to counteract 7-ketocholesterol (7-KC)-induced oxidative stress and apoptosis in human macrophages. Human THP-1 macrophages were exposed to 7-KC (10–25 μM) alone and in combination with lycopene (0.5–2 μM), and we monitored changes in cell oxidative status [reactive oxygen species (ROS) production, NOX-4, hsp70 and hsp90 expressions, 8-OHdG formation] and in cell proliferation and apoptosis. After 24 h of treatment, lycopene significantly reduced the increase in ROS production and in 8-OHdG formation induced by the oxysterol in a dose-dependent manner. Moreover, the carotenoid strongly prevented the increase of NOX-4, hsp70 and hsp90 expressions as well as the phosphorylation of the redox-sensitive p38, JNK and ERK1/2 induced by the oxysterol. The attenuation of 7-KC-induced oxidative stress by lycopene coincided with a normalization of cell growth in human macrophages. Lycopene prevented the arrest in G0/G1 phase of cell cycle induced by the oxysterol and counteracted the increased expression of p53 and p21. Concomitantly, it inhibited 7-KC-induced apoptosis, by limiting caspase-3 activation and the modulatory effects of 7-KC on AKT, Bcl-2, Bcl-xL and Bax. Comparing the effects of lycopene, β-carotene and (5Z)-lycopene on ROS production, cell growth and apoptosis show that lycopene and its isomer were more effective than β-carotene in counteracting the dangerous effects of 7-KC in human macrophages. Our study suggests that lycopene may act as a potential antiatherogenic agent by preventing 7-KC-induced oxidative stress and apoptosis in human macrophages.  相似文献   

11.
Cigarette smoking is a risk factor for atherosclerosis. It is conceivable that reactive chemical components in cigarette smoke may adversely affect reverse cholesterol transport at the level of lecithin:cholesterol acyltransferase (LCAT) and promote atherogenesis. Hence, the effect of cigarette smoke extract (CSE) on the activity of LCAT in human plasma was studied. When incubated with plasma, CSE caused both concentration- and time-dependent losses of LCAT activity. Addition of glutathione, but not ascorbate, to plasma prevented loss of LCAT activity caused by CSE. Incubation of plasma with some reactive aldehydes known to be present in cigarette smoke also inhibited LCAT activity. Among five aldehydes tested, acrolein was the strongest inhibitor of LCAT, with complete enzyme inhibition occurring at 1 mM. Acetaldehyde was the weakest inhibitor of LCAT, with 85% enzyme inhibition at 50 mM. Hexanal, formaldehyde, and malondialdehyde completely inhibited LCAT activity at 10, 50, and 50 mM, respectively. When plasma was incubated with 1 mM acrolein in the presence of 2.5 mM glutathione or dihydrolipoic acid, 100 and 57% of LCAT activity, respectively, remained after incubation. This finding suggests that reactive aldehydes may form adducts with certain free sulfhydryl groups functioning in the active site of LCAT to inhibit enzyme activity. It is concluded that reactive aldehydes are at least partially responsible for the reduction in LCAT activity in plasma treated with CSE.  相似文献   

12.
Carotenogenesis in mung been seedlings has been shown to beunder phytochrome control. Dark-grown seedlings contain moreindividual carotenoids than light-treated ones, but total carotenoidsare greatly increased by light. As expected, chlorophyll wassynthesized after a lag period on transferring etiolated seedlingsto the light, and there was an increase in total chlorophylland a parallel increase in total carotenoids. CPTA [2-(4-chlorophenylthio)-triethylamine hydrochloride]-treatedseedlings showed a decrease in both total carotenoids and totalchlorophylls. The usual effect of CPTA was also observed withmung bean seedlings, namely that lycopene, normally absent,appeared and increased to 17 per cent of total carotenoids afteran eight-day treatment. A cis-lycopene, possibly poly-cis-lycopene,was observed for the first time in CPTA-treated tissues. Onlyin the presence of CPTA but not on its removal was it possibleto show an inverse relationship between ß-caroteneand lycopene. This suggests that CPTA may not act as a cyclaseinhibitor in green tissues, cyclase being the enzyme/s involvedin the cyclization of carotenes. Phaseolus aureus Roxb., mung bean, carotenes, lycopene, xanthophylls, chlorophyll, 2-(4-chlorophenylthio)-triethylamine hydrochloride  相似文献   

13.
The biosynthesis of the tyrosine-derived cyanogenic glucoside dhurrin has been studied with a microsomal preparation obtained from etiolated seedlings of sorghum. The biosynthetic pathway involves tyrosine, N-hydroxytyrosine, and p-hydroxyphenylacetaldehyde oxime as early intermediates (M?ller, B. L. and Conn, E. E. (1980) J. Biol. Chem. 254, 8575-8583). The use of deuterium-labeled tyrosine and mass spectrometric analyses demonstrate that the alpha-hydrogen atom of tyrosine is retained in the conversion of tyrosine to p-hydroxyphenylacetaldehyde oxime. This excludes p-hydroxyphenylpyruvic acid oxime as intermediate in the pathway. A high pressure liquid chromatography method was developed to separate the (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime. The microsomal enzyme system was found to produce initially the (E)-isomer of p-hydroxyphenylacetaldehyde oxime. An isomerase then converts the (E)-isomer to the (Z)-isomer, which is the isomer preferentially utilized by the microsomal enzyme system in the subsequent biosynthetic reactions. The (E)-isomer produced in situ is more efficiently converted to the (Z)-isomer than exogenously added (E)-isomer and may thus be metabolically channeled.  相似文献   

14.
The intracellular and intraplastidic distribution of carotenoids has been investigated in radish seedlings grown in the presence of the herbicides amitrole and SAN 6706. Both herbicides caused bleaching and the plants became deficient in chlorophylls and the usual chloroplast cyclic carotenoids, but accumulated the acyclic carotenoid biosynthetic intermediates 15-cis-phytoene and all-trans-lycopene. In both the untreated and herbicide-treated plants all carotenoids, including phytoene and lycopene, were contained in the plastid. In all cases the normal cyclic carotenoids were located virtually exclusively in the thylakoid or prothylakoid fraction. In amitrole-treated plants, lycopene also was contained only in the thylakoid fraction, whereas phytoene, in these and in SAN 6706-treated plants, was detected in both the thylakoid fraction and an envelope preparation. Possible implications for the biosynthesis of the carotenoids are discussed.  相似文献   

15.
(Z)-and (E)-phosphoenol-2-ketobutyrate were synthesized. [3-2H]-2-Ketobutyrates were formed from both isomers in the pyruvate kinase reaction in 2H2O and were converted to chiral propionates. Authentic (2S)-[2-2H]propionic acid was also prepared, and the optical rotatory dispersion curves of the propionates were compared. The rotation compared with standard propionate at 240 nm of sodium (2R)-[2-2H]propionate from the Z isomer was 47% (i.e., 53% was RS), and of (2S)-[2-2H]propionate from the E isomer was 29% (i.e., 71% was RS). Protonation at C-3 of the 2 si, 3 re face of the pseudosubstrates would have yielded (2R)- and (2S)-[2-2H]propionates from the Z and E analogues, respectively. An explanation offered for the nonstereoselective protonation that occurred is dissociation of the enol from the enzyme and subsequent random protonation in solution.  相似文献   

16.
We hypothesized that the high concentrations of reactive nitrogen species in cigarette smoke and the known stimulatory effects of cigarette smoke on the inflammatory immune systems would lead to the formation of 5-nitro-γ-tocopherol (NGT). In order to assess γ-tocopherol nitration, human plasma was exposed in vitro to gas phase cigarette smoke (GPCS) or air for up to 6 h. A liquid chromatography-mass spectrometry (LC-MS) method was developed to quantitate NGT. Detector response was linear from 0.1 to 3 pmol NGT, with a detection limit of 20 fmol. After a 1 h lag time, 6 h plasma exposure to GPCS depleted 75% of -T, 60% of γ-T and increased NGT from 3 to 134 nmol/l. The increase in NGT accounted for 20% of the γ-T decrease. NGT also correlated (R2 = 0.9043) with nitrate concentrations in GPCS-exposed plasma. The physiologic relevance of NGT was evaluated in a group of healthy humans. Smokers (n = 15) had plasma NGT concentrations double those of nonsmokers (n = 19), regardless of corrections using lipids or γ-T; plasma -T and γ-T concentrations were similar between the groups. Our results show that LC-MS can be successfully used for NGT quantitation in biologic samples. Importantly, NGT in smokers' plasma suggests that cigarette smoking causes increased nitrosative stress.  相似文献   

17.
Liu X  Lu J  Liu S 《Mutation research》1999,440(1):109-117
Chromium(VI) compounds and cigarette smoke are known human carcinogens. We found that K2Cr2O7 and cigarette smoke solution synergistically induced DNA single-strand breaks (0.23+/-0.04 breaks per DNA molecule) in pUC118 plasmid DNA. K2Cr2O7 alone or cigarette smoke solution alone induced much less strand breaks (0.03+/-0.01 or 0.07+/-0.02 breaks per DNA molecule, respectively). The synergistic effect was prevented by catalase and by hydroxyl radical scavengers such as deferoxamine, dimethylsulfoxide, d-mannitol, and Tris, but not by superoxide dismutase. Ascorbic acid enhanced the synergism. Glutathione inhibited strand breakage only at high concentrations. Electron spin resonance (ESR) studies using a hydroxyl radical trap demonstrated that hydroxyl radicals were generated when DNA was incubated with K2Cr2O7 and cigarette smoke solution. Hydroxyl radical adduct decreased dose-dependently when strand breakage was prevented by catalase, deferoxamine, dimethylsulfoxide, d-mannitol or Tris, but not significantly by superoxide dismutase. We also used ESR spectroscopy to study the effects of different concentration of ascorbic acid and glutathione. The results showed that hydroxyl radical, which is proposed as a main carcinogenic mechanism for both chromium(VI) compounds and cigarette smoke solution was mainly responsible for the DNA breaks they induced.  相似文献   

18.
Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease and alters expression of proteolytic enzymes that contribute to disease pathology. Previously, we reported that smoke exposure leads to the induction of matrix metalloproteinase-1 (MMP-1) through the activation of ERK1/2, which is critical to the development of emphysema. To date, the upstream signaling pathway by which cigarette smoke induces MMP-1 expression has been undefined. This study demonstrates that cigarette smoke mediates MMP-1 expression via activation of the TLR4 signaling cascade. In vitro cell culture studies demonstrated that cigarette smoke-induced MMP-1 was regulated by TLR4 via MyD88/IRAK1. Blockade of TLR4 or inhibition of IRAK1 prevented cigarette smoke induction of MMP-1. Mice exposed to acute levels of cigarette smoke exhibited increased TLR4 expression. To further confirm the in vivo relevance of this signaling pathway, rabbits exposed to acute cigarette smoke were found to have elevated TLR4 signaling and subsequent MMP-1 expression. Additionally, lungs from smokers exhibited elevated TLR4 and MMP-1 levels. Therefore, our data indicate that TLR4 signaling, through MyD88 and IRAK1, plays a predominant role in MMP-1 induction by cigarette smoke. The identification of the TLR4 pathway as a regulator of smoke-induced protease production presents a series of novel targets for future therapy in chronic obstructive pulmonary disease.  相似文献   

19.
We report the development of (E)- and (Z)-4-hydroxytamoxifen sulfamates as estrone sulfatase inhibitors, potential therapeutic agents for the treatment of breast cancer. Both compounds competitively inhibit estrone sulfatase isolated from rat liver with apparent Ki of 35.9 microM for (E)-4-hydroxytamoxifen sulfamate and an apparent Ki of > 500 microM for the (Z) isomer.  相似文献   

20.
Nineteen carotenoids were identified in extracts of petals of orange- and yellow-flowered cultivars of calendula (Calendula officinalis L.). Ten carotenoids were unique to orange-flowered cultivars. The UV-vis absorption maxima of these ten carotenoids were at longer wavelengths than that of flavoxanthin, the main carotenoid of calendula petals, and it is clear that these carotenoids are responsible for the orange color of the petals. Six carotenoids had a cis structure at C-5 (C-5'), and it is conceivable that these (5Z)-carotenoids are enzymatically isomerized at C-5 in a pathway that diverges from the main carotenoid biosynthesis pathway. Among them, (5Z,9Z)-lycopene (1), (5Z,9Z,5'Z,9'Z)-lycopene (3), (5'Z)-gamma-carotene (4), and (5'Z,9'Z)-rubixanthin (5) has never before been identified. Additionally, (5Z,9Z,5'Z)-lycopene (2) has been reported only as a synthesized compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号