首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
He Q  Rohani S  Zhu J  Gomaa H 《Chirality》2012,24(2):119-128
The chiral discrimination mechanism in the resolution of sertraline with mandelic acid was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing difference in crystal structures of the resulting diastereomeric salts. A new one-dimensional chain-like hydrogen-bonding network and unique supramolecular packing mode are disclosed. The investigation demonstrated that stable hydrogen-bonding pattern, herringbone-like arrangement of aromatic rings, and planar boundary surface in the hydrophobic region are the three most important structural characteristics expected in less soluble diastereomeric salts. The existence and magnitude of hydrogen bond, CH/π interaction, and van der Waals interaction related to three characteristic structures, determine the stability of diastereomeric salt. The hydrogen bond is not necessarily the dominant factor while the synergy and optimization of all weak intermolecular interactions attribute to the chiral recognition.  相似文献   

2.
A novel, multilayer structure of a helical peptide.   总被引:1,自引:1,他引:0       下载免费PDF全文
X-ray diffraction analysis at 1.5 A resolution has confirmed the helical conformation of a de novo designed 18-residue peptide. However, the crystal structure reveals the formation of continuous molecular layers of parallel-packed amphiphilic helices as a result of much more extensive helix-helix interactions than predicted. The crystal packing arrangement, by virtue of distinct antiparallel packing interactions, segregates the polar and apolar surfaces of the helices into discrete and well-defined interfacial regions. An extensive "ridges-into-grooves" interdigitation characterizes the hydrophobic interface, whereas an extensive network of salt bridges and hydrogen bonds dominates the corresponding hydrophilic interface.  相似文献   

3.
The positively charged quaternary ammonium cyclodextrin, QA-beta-CD, was previously used as a chiral selector to achieve baseline resolution of two of the dianionic enantiomers of disodium 3-(p-isothiocyanatophenoxy)-3-(p-isothiocyanatophenyl)propane-1,2-disulfate by capillary electrophoresis. The basis of the chiral discrimination between QA-beta-CD and the enantiomers was investigated by (1)H NMR spectroscopy. COSY and NOESY spectra were used to infer the role that molecular interactions and the stereocenters have upon association of QA-beta-CD with the enantiomers. A parallel two-step complexation model is used to rationalize the NMR and the chiral discrimination observed during separation of the enantiomers.  相似文献   

4.
Melittin from bee venom is water-soluble, yet integrates into membranes and lyses cells. Each melittin chain consists of 26 amino acid residues and in aqueous salt solutions it exists as a tetramer. We have determined the molecular structure of the tetramer in two crystal forms grown from concentrated salt solutions. In both crystal forms the melittin polypeptide is a bent alpha-helical rod, with the "inner" surface largely consisting of hydrophobic sidechains and the "outer" surface consisting of hydrophilic side chains. Thus, the helix is strongly amphiphilic. In the tetramer, four such helices contribute their hydrophobic side chains to the center of the molecule. The packing of melittin tetramers is also very similar in the two crystal forms: they are packed in planar layers with the outsides forming hydrophilic surfaces and the insides (the centers of melittin tetramers) forming a hydrophobic surface. We suggest that the surface activity of melittin can be rationalized in terms of these surfaces. The lytic activity of melittin can also be interpreted in terms of the molecular structure observed in the crystals: the hydrophobic inner surface of a melittin helix may integrate into the apolar region of a bilayer with the helix axis approximately parallel to the plane of the bilayer, and with the hydrophilic surface exposed to the aqueous phase. This integration would be expected to disrupt the bilayer because of melittin helix would penetrate only a short distance into it. Additionally, the integration of melittin from one side of a bilayer would produce a surface area difference across the bilayer, perhaps leading to lysis. In this view, melittin is distinct from membrane proteins that penetrate evenly into both leaflets of a bilayer or exactly halfway through a bilayer, and hence we refer to melittin as a surface-active protein.  相似文献   

5.
Although molecular recognitions between membrane receptors and their soluble ligands have been analyzed using their soluble proteins in bulk solutions, molecular recognitions of membrane receptors should be studied on lipid membranes considering their orientation and dynamics on membrane surfaces. We employed Staphylococcal Protein A (SpA) oligo B domains with long trialkyl-tags from E. coli (LppBx, x = 1, 2, and 5) and immobilized LppBx on lipid layers using hydrophobic interactions from the trialkyl-tag, while maintaining the orientation of B domain-chains on a 27 MHz quartz-crystal microbalance (QCM; AT-cut shear mode). The binding of IgG Fc regions to LppBx on lipid layers was detected by frequency decreases (mass increases) on the QCM. The maximum amount bound (Delta m(max)), association constants (K(a)), association and dissociation rate constants (k(1) and k(-1), respectively) were obtained. Binding kinetics of IgG to LppB2 and LppB5 were quite similar, showing a simple 1:1 binding of the IgG Fc region to the B domain, when the surface coverage of LppB2 and LppB5 on the lipid surface is low (1.4%). When LppB5 was immobilized at the high surface coverage of 3.5%, the complex bindings of IgG such as one IgG bound to one or two LppB5 on the membrane could be observed. IgG-LppB1 binding was largely restricted because of steric hindrance on lipid surfaces. This gives a suggestion why Protein A has five IgG binding domains.  相似文献   

6.
Resolution of enantiomers of chiral compounds via crystallization is the dominant method in chemical industry, but chiral recognition at the molecular level during this process is still poorly understood. Using single metal surfaces in ultrahigh vacuum as model system, the enantio-related transition from the monolayer structure into a double layer of the racemic mixture of heptahelicene has been studied with scanning tunneling microscopy. Submolecular resolution reveals enantiopure second layers on Ag(111) and almost enantiopure second layers on Au(111). In analogy to previous results on Cu(111), it is concluded that transition from the 2D first layer racemate into a layered racemate occurs.  相似文献   

7.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
When water-coated hydrophobic surfaces meet, direct contacts form between the surfaces, driving water out. However, long-range attractive forces first bring those surfaces close. This analysis reveals the source and strength of the long-range attraction between water-coated hydrophobic surfaces. The origin is in the polarization field produced by the strong correlation and coupling of the dipoles of the water molecules at the surfaces. We show that this polarization field gives rise to dipoles on the surface of the hydrophobic solutes that generate long-range hydrophobic attractions. Thus, hydrophobic aggregation begins with a step in which water-coated nonpolar solutes approach one another due to long-range electrostatic forces. This precursor regime occurs before the entropy increase of releasing the water layers and the short-range van der Waals attraction provide the driving force to "dry out" the contact surface. The effective force of attraction is derived from basic molecular principles, without assumptions of the structure of the hydrophobe-water interaction. The strength of this force can be measured directly from atomic force microscopy images of a hydrophobic molecule tethered to a surface but extending into water, and another hydrophobe attached to an atomic force probe. The phenomenon can be observed in the transverse relaxation rates in water proton magnetic resonance as well. The results shed light on the way water mediates chemical and biological self-assembly, a long outstanding problem.  相似文献   

9.
Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano‐systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. Chirality 27:613–618, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
This article reports, for the first time, on the absolute configuration of (+)-9-benzyloxy-α-dihydrotetrabenazine ( 8 ), as determined from the perspective of X-ray crystallography. Compound 8 was prepared by a six-step reaction using 3-benzyloxy-4-methoxybenzaldehyde ( 1 ) as a starting material. The X-ray crystal diffraction structure of two compounds, racemic 9-benzyloxy-tetrabenazine ( 5 ) and the diastereomeric salt of compound 8 , is also described for the first time in this article. The X-ray results and the chiral HPLC helped elucidate that compound 8 has an absolute configuration as 2R,3R,11bR. The crystal structure of racemic compound 5 contains two symmetry- independent molecules in the unit cell. Interestingly, while they are structural isomers, they are enantiomers, too, i.e., in solution, because they are not mirror images of each other in the crystal lattice. In order to elucidate the intermolecular interaction mechanism of the diastereomeric salt of compound 8 , its crystal packing was investigated with regard to the weak interactions, such as salt bridge, OH…O and CH…O hydrogen bonds, and intermolecular CH…π interaction. The results showed that the carbonyl-assisted salt bridges and the OH…O hydrogen bonds formed polar columns in the crystal structure of the diastereomeric salt of compound 8 , resembling butterflies with open wings as viewed along the c-axis. These polar columns were extended to three-dimensional network by intermolecular CH…O hydrogen bonds and intermolecular CH…π interactions. Chirality, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Paola Peluso  Sergio Cossu 《Chirality》2013,25(11):709-718
With the aim to define a combined computational/chromatographic empirical approach useful for the high‐performance liquid chromatography (HPLC) method development of new chiral compounds, 36 racemic aromatic compounds with different chemical structures were used as test probes on four polysaccharide‐based chiral stationary phases (CSPs) of the Lux series, namely Lux Cellulose‐1, Lux Cellulose‐2, Lux Cellulose‐4, and Lux Amylose‐2, using classical n‐hexane/2‐propanol mixtures as mobile phase. Electrostatic potential surfaces (EPSs) determined using Density Functional Theory (DFT) calculations were used to derive size, shape, and electronic properties of each analyte. Then a comparative HPLC screening was carried out in order to evaluate the impact of substituents, shapes, and electronic properties of the analytes on the chromatographic behavior as the column changes. The four CSPs showed good complementary recognition ability. The elution sequence was determined in 30 cases out of 36. The success rate to afford baseline separations (Rs ≥ 1.5) was estimated: 29 compounds out of 36 showed baseline enantioseparation on at least one of the four selected CSPs. The combined computational‐chromatographic screening furnished useful collective structure‐chromatographic behavior relationships and a map of the chiral discrimination abilities of the considered CSPs towards the analytes. On this basis, the chromatographic behavior of new analytes on a set of polysaccharide‐based CSPs can be mapped through the qualitative correlation of chromatographic parameters (k, α, Rs) to computed molecular properties of the analytes. Chirality 25:709–718, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
A fluorescent chiral molecular micelle (FCMM), poly (sodium N-undecanoyl-L-phenylalaninate) (poly-L-SUF), was developed as a chiral selector for enantiomeric recognition and determination of enantiomeric composition of four fluorescent and four nonfluorescent chiral molecules by use of steady-state fluorescence spectroscopy. The influence of FCMM concentration, buffer pH and complexation medium on FCMM-analyte host-guest complexation, and the emission spectral properties of the resulting complexes were investigated. The chiral interactions of the analytes,1,1'-binaphthyl-2,2'-diamine, 1-(9-anthryl)-2,2,2-trifluoroethanol, propranolol, naproxen, chloromethyl menthyl ether (CME), citramalic acid, tartaric acid, and limonene (LIM), in the presence of poly-L-SUF were based on diastereomeric complex formation. The figures of merit obtained from the partial-least-squares regression modeling of the calibration samples suggested good prediction ability for the validation of six of the eight chiral analytes. Better host-guest complexation of the more hydrophobic molecules, CME and LIM, were obtained in methanol/water mixtures, resulting in better predictability of the regression models. Prediction ability of the models was evaluated by use of the root-mean-square percent relative error (RMS%RE) and was found to range from 1.77 to 15.80% (buffer), 1.26 to 7.95% (25:75 methanol/water), and 1.21 to 4.28% (75:25 methanol/water).  相似文献   

13.
14.
15.
One hundred twenty globular proteins and forty five "leucine zippers" representing all types of packing of long alpha-helices were studied in terms of revealing and comparing their interhelical hydrogen and salt bonds. Many previous studies of "leucine zippers" and their analogs showed that interhelical interactions between polar groups could impart specificity to packing of an alpha-helix. The current comparison demonstrated that basically, globular proteins and "leucine zippers" had similar interhelical polar interactions with presumably a similar structural role. However, depending on packing of alpha-helices, the networks of interhelical polar bonds were shown to be distinct and determined both by physicochemical properties of involved amino acid residues and by the relative positions of hydrophobic and hydrophilic residues on the surface of alpha-helices. The revealed distinction is probably crucial for selecting the unique packing of an alpha-helix.  相似文献   

16.
Summary A model is proposed for a prebiotic environment in which concentration, condensation, and chemical evolution of biomolecules could have taken place. The main reactions expected of proteins, nucleic acids, lipids, and some of their precursors in this environment are examined.The model is based on our previously developed concept of a fluctuating system in which hydration and dehydration processes take place in a cyclic manner. In the present model, however, high concentrations of soluble salts, such as chlorides and sulfates, are taken into account, whereas previously a more or less salt-free system had been assumed. Thus the preponderance of surfaces of soluble salts is implied, even though sparingly soluble minerals, such as clay minerals or quartz, are also present.During the dehydration stage biomolecules tend to leave the solution and concentrate at certain microenvironments, such as in micelles and aggregates, at the liquid-gas surface and, possibly, at the emerging solid surfaces. Moreover, in these brines, and especially during the last stages of dehydration, high temperatures are attainable, which may enhance certain reactions between the organic molecules, and result in a net increase of condensation over degradation.In the dehydrated state, solid-state condensation and synthesis reactions are possible in which the surface of soluble salts may serve as a catalyst. Several reports in the literature support this hypothesis. Hydration brings about dissolution of the minerals and redistribution of the biomolecules. In such a system, evolutionary processes like those postulated by White (1980) and by Lahav and White (1980) are possible. Moreover, since several soluble salts of known geological occurrence are optically active in their crystalline state, the involvement of the model system in the selection and evolution of chiral organic compounds should also be considered. In addition, organic molecules in the above microenvironments are also expected to undergo selective interactions based on factors such as molecular pattern and chiral recognition and hydrophobicity. The proposed system emphasizes the need to develop the theoretical background and experimental methods for the study of interactions among biomolecules in the presence of high salt concentrations and solid surfaces of soluble salts, as well as interactions between the biomolecules and these surfaces.  相似文献   

17.
Chiral ionic liquids hold promise in many asymmetric applications. This study explores the impact of ionic solutes on the chiral discrimination of five amino acid methyl ester‐based ionic liquids, including L‐ and D‐alanine methyl ester, L‐proline methyl ester, L‐leucine methyl ester, and L‐valine methyl ester cations combined with bis(trifluoromethanesulfonimide) anion. Circularly polarized luminescence spectroscopy was used to study the chiral discrimination by measuring the racemization equilibrium of a dissymmetric europium complex, Eu(dpa)33? (where dpa = 2,6‐pyridinedicarboxylate). The chiral discrimination measured was dependent on the concentration of Eu(dpa)33? and this concentration‐dependence was different in each of the ionic liquids. Ionic liquids with L‐leucine methyl ester and L‐valine methyl ester even switched enantiomeric preference based on the solute concentration. Changing the cation of the Eu(dpa)33? salt from tetrabutylammonium to tetramethylammonium ion also affected the chiral discrimination demonstrated by the ionic liquids. Chirality 27:320–325, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
A crystal structure of the C-terminal domain of Escherichia coli UvrB (UvrB') has been solved to 3.0 A resolution. The domain adopts a helix-loop-helix fold which is stabilised by the packing of hydrophobic side-chains between helices. From the UvrB' fold, a model for a domain of UvrC (UvrC') that has high sequence homology with UvrB' has been made. In the crystal, a dimerisation of UvrB domains is seen involving specific hydrophobic and salt bridge interactions between residues in and close to the loop region of the domain. It is proposed that a homologous mode of interaction may occur between UvrB and UvrC. This interaction is likely to be flexible, potentially spanning > 50 A.  相似文献   

19.
Shizuma M  Adachi H  Ono D  Sato H  Nakamura M 《Chirality》2009,21(2):324-330
A simultaneous estimation of the chiral discrimination abilities of several chiral hosts was demonstrated on the basis of one mass spectrum. The chiral host mixture, including H(1), H(2), H(3) ..., and H(m) (m: number of hosts) was prepared by etherification of several chiral alcohols with bistosylate of diethylene glycol. An equimolar mixture of a deuterium-labeled (S)- and unlabeled (R)-enantiomer of an amino acid isopropyl ester hydrochloride (G(S-dn) (+)Cl(-) and G(R) (+)Cl(-), n: number of deuterium atoms) was added to the chiral host mixture, and the FAB mass spectrum was measured to evaluate the chiral discrimination ability of each host in the mixture without isolation. The chiral discrimination ability of each host toward the guest is represented by the relative peak intensity of the diastereomeric complex ion pair, I(H(m) + G(R)((+)/I(H(m) + G(S-dn))(+) (=I(R)/I(S-dn) value). Several new hosts showed good chiral discrimination toward the guest.  相似文献   

20.
《Chirality》2017,29(7):386-397
Chiral resolution of baclofen, bupropion, and etodolac profens was obtained with amylose derivatized chiral reversed stationary phase (carbamate groups). The eluent used for bupropion and etodolac was MeOH–water (20:80, v /v) and for baclofen was water–methanol (95:5, v /v). The eluent run rates, finding wavelength and temperature, were 1.0 mL/min, 220 nm and 27 ± 1 °C for all the eluents. The magnitude of the retardation factors for S‐ and R‐enantiomers of baclofen, bupropion, and etodolac were 1.37, 2.62, 2.25, 3.25, 1.8, and 3.0. The magnitudes of separation and resolution factors were 1.90, 1.44, and 1.67 and 2.77, 2.35, and 2.04. Limits of detection and quantitation were 1.0–2.0 and 5.1–10.0 μg/mL. Chiral recognition mechanisms were recognized by simulation and high‐performance liquid chromatography (HPLC) experiments. It was seen that hydrogen interactions, hydrophobic interactions, and π–π exchanges were the chief interactions for chiral recognition mechanisms. The described methods may be exploited for the chiral separation of baclofen, bupropion, and etodolac profens in any unknown sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号