首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.  相似文献   

2.
The dynamics of fluorescence quenching and the organization of a series of pyrene derivatives anchored in various depths in bilayers of phosphatidylcholine small unilamellar vesicles was studied and compared with their behavior in homogeneous solvent systems. The studies include characterization of the environmental polarity of the pyrene fluorophore based on its vibronic peaks, as well as the interaction with three collisional quenchers: the two membrane-soluble quenchers, diethylaniline and bromobenzene, and the water soluble quencher potassium iodide. The system of diethylaniline-pyrene derivatives in the membrane of phosphatidylcholine vesicles was characterized in detail. The diethylaniline partition coefficient between the lipid bilayers and the buffer is approximately 5,800. Up to a diethylaniline/phospholipid mole ratio of 1:3 the perturbation to membrane structure is minimal so that all photophysical studies were performed below this mole ratio. The quenching reaction, in all cases, was shown to take place in the lipid bilayer interior and the relative quenching efficiencies of the various probe molecules was used to provide information on the distribution of both fluorescent probes and quencher molecules in the lipid bilayer. The quenching efficiency by diethylaniline in the lipid bilayer was found to be essentially independent on the length of the methylene chain of the pyrene moiety. These findings suggest that the quenching process, being a diffusion controlled reaction, is determined by the mobility of the diethylaniline quencher (with an effective diffusion coefficient D approximately 10(-7) cm2 s-1) which appears to be homogeneously distributed throughout the lipid bilayer. The pulsed laser photolysis products of the charge-transfer quenching reaction were examined. No exciplex (excited-complex) formation was observed and the yield of the separated radical ions was shown to be tenfold smaller than in homogenous polar solutions. The decay of the radical ions is considerably faster than the corresponding process in homogenous solutions. Relatively high intersystem crossing yields are observed. The results are explained on the basis of the intrinsic properties of a lipid bilayer, primarily, its rigid spatial organization. It is suggested that such properties favor ion-pair formation over exciplex generation. They also enhance primary geminate recombination of initially formed (solvent-shared) ion pairs. Triplet states are generated via secondary geminate recombination of ion pairs in the membrane interior. The results bear on the general mechanism of electron transfer processes in biomembranes.  相似文献   

3.
Enzyme-catalyzed reactions in organic media of rac-ketoprofen esters with different nucleophiles such as alcohols, amines, and water have been studied. Among the parameters optimized are the enzyme, the activated substrate, and the solvent. With the enzymes used in this study the preferred substrate was the trifluoroethyl ester of rac-ketoprofen (rac- 2 ), whose (R)-enantiomer reacted preferentially. The enzyme of choice was the lipase M-AP-10 from Mucor miehei and best results were obtained with diisopropyl ether as solvent. Three different methods have been scaled-up for the resolution of 75–150 g of substrate: transesterification with 1-butanol (90% yield of (S)-ketoprofen, 88% ee), transesterification with 2-(2-pyridyl)ethanol (94% yield, 92% ee), and hydrolysis in wet organic solvent (93% yield, 97% ee). Despite the comparable chemical and optical yields obtained with these three methods, the use of 2-(2-pyridyl)ethanol and the hydrolysis allowed a much easier work-up and isolation of the desired (+)-(S)-ketoprofen. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Taira S  Crépy KV  Imamoto T 《Chirality》2002,14(5):386-392
The copper-catalyzed enantioselective conjugate addition of diethylzinc to 2-cyclohexen-1-one was investigated using (R,R)-bis-(t-butylmethylphosphino)methane (1c) as a chiral ligand. The reaction was carried out at 0 degrees C in THF-toluene as the solvent system and in the presence of 1.2 mol% of CuOTf afforded (S)-3-ethylcyclohexan-1-one with 85% ee.  相似文献   

5.
Maekawa H  Itoh K  Goda S  Nishiguchi I 《Chirality》2003,15(1):95-100
Anodic oxidation of 1-acetoxy-3,4-dihydronaphthalene (1) and alpha-acetoxy-beta-alkylstyrenes (3) at -78 degrees C in a mixed solvent of acetonitrile (CH(3)CN), tetrahydrofuran (THF), and acetic acid (AcOH) containing (S)-tetraethylammonium camphorsulfonate as a chiral supporting electrolyte brought about enantioselective formation of the corresponding 2-acetoxy-1-tetralones (2) and (R)-2-acetoxy-1-phenyl-1-alkanone (4) with maximum enantiomeric excess (ee) of 44% and 21%, respectively. Introduction of a 7-methoxy group into 1 and increase in bulkiness of a beta-alkyl group in 3 resulted in improvement of enantioselectivity of the reactions.  相似文献   

6.
Exciplex behaviour of three benzoxazole derivatives has been detected and intensively investigated by means of steady-state and time-resolved fluorescence techniques and transient absorption spectroscopy. The fluorescence of these compounds shows the properties which are typical for the excited state charge transfer complexes (exciplexes). Besides of the short wavelength fluorescence, which is similar in spectral distribution to the fluorescence of the electron acceptor (2-p-tolyl-benzoxazole), the red shifted, broad and structureless emission band is observed in solvents of low and medium polarity. The detailed analysis of the fluorescence data shows that the ratio of the CT and LE fluorescence initially increases with increasing solvent polarity, achieves a maximum, and drops for more polar solvents (epsilon(s) = 7). Similar behaviour is observed for the exciplex fluorescence lifetimes. The overall fluorescence and the relative intersystem crossing quantum yields show the decrease of these values with increasing solvent polarity. These observations have been explained on the basis of Marcus-type theory for nonradiative charge transfer rate constants. Increasing solvent polarity strongly accelerates the back electron transfer process which recovers the whole molecule in the ground state. The probability of the compact exciplex formation (i.e. sandwich-type structures) depends on solvent viscosity and degree of freedom of the bending of the saturated linker. The compound containing crown ether as a donor subunit may be used as a fluorescent indicator of inorganic cations (barium and lithium). We found an effective complexation of the compound in the ground state with barium and lithium cations. The complex is also stable in the excited state which manifests itself in strong increase of the fluorescence intensity.  相似文献   

7.
A B?rner 《Chirality》2001,13(10):625-628
Enzymes and synthetic organometallic catalysts utilize different approaches for the creation of chiral centers in prochiral substrates. While chiral organometallic catalysts realize the transfer of chirality mainly by repulsive interactions, several enzymes use preferentially stereodiscriminating hydrogen bonding. To investigate if hydrogen bonding within the catalyst-substrate assembly can also have a benefit on the rhodium diphosphine-catalyzed asymmetric hydrogenation, some model metal complexes and substrates were investigated. As 'biomimetically acting' functionalities, hydroxy groups were incorporated in the chiral ligand. Three secondary interactions could be identified by different analytical methods which influence rate and enantioselectivity of the catalytic reaction: 1) HO/Rh-interactions, 2) HO/HO-interactions within the backbone of the ligand, and 3) hydrogen bonding between HO-groups of the ligand and functional groups of an appropriate substrate. Due to the effect of the additional hydroxy groups, enantioselectivities by up to 99% ee could be induced in the hydrogenation product even with water as solvent.  相似文献   

8.
Arita S  Yabuuchi T  Kusumi T 《Chirality》2003,15(7):609-614
Racemic 1- and 2-naphthylmethoxyacetic acids (1NMA and 2NMA), the chiral anisotropic reagents used for absolute configuration determination of chiral secondary alcohols and primary amines, were conveniently resolved to enantiomers (>99% ee) by condensation with L-phenylalaninol (2-amino-3-phenylpropanol), chromatographic separation of the diastereomers, and hydrolysis. This method enables large-scale preparation of enantiomeric 1NMA and 2NMA.  相似文献   

9.
Racemic N-methylamphetamine (rac-MA) was resolved with 2R,3R-tartaric acid (TA) and its derivatives (O,O'-dibenzoyl-(2R,3R)-tartaric acid monohydrate (DBTA) and O,O'-di-p-toluoyl-(2R,3R)-tartaric acid (DPTTA)), individually and using them in different combinations. After partial diastereomeric salt formation, the free enantiomers were extracted by supercritical fluid extraction using carbon dioxide as solvent. DBTA and DPTTA are efficient resolving agents for rac-MA, the best chiral separation being obtained at a molar ratio of 0.25 resolving agent to racemic compound for both resolving agents (ee(E) = 82.5% and ee(E) = 57.9%, respectively). Compared with the two other acids, TA is practically unsuitable for enantiomer separation (ee(E) < 5%). Applying a mixture of one individually active and one ineffective acid in half the equivalent molar ratio, when the acids are in 1:1 ratio in the mixture, the resolution efficiency values obtained exceeded those obtained by using the components individually. Decreasing the molar ratio of resolving agent mixture to 0.25, at which the individual resolving agents give the best chiral separation, the obtained resolution efficiency values did not differ significantly from those expected. The outcome of the resolution process depended only on the amount of the individually active resolving agents in the mixture.  相似文献   

10.
The biotransformation of toluene to 3-methycatechol (3MC) via Pseudomonas putida MC2 was used as a model system for the development of a biphasic process offering enhanced overall volumetric productivity. Three factors were investigated for the identification of an appropriate organic solvent and they included solvent toxicity, bioavailability of the solvent as well as solvent affinity for 3MC. The critical log P (log P(crit)) of the biocatalyst was found to be 3.1 and log P values were used to predict a solvent's toxicity. The presence of various functional groups of candidate solvents were used to predict the absorption of 3MC and it was found that solvents possessing polarity showed an affinity towards 3MC. Bis (2-ethylhexyl) sebecate was selected for use in the biphasic system as it fulfilled all selection criteria. A two-phase biotransformation with BES and a 50% phase volume ratio, achieved an overall volumetric productivity of 440 mg 3MC/L-h, which was an improvement by a factor of approximately 4 over previously operated systems. Additional work focused on reducing the toluene feed in order to minimize possible toxicity and decrease loss of substrate (toluene), a result of volatilization. Toluene losses were reduced by a factor of 4, compared to previously operated systems, without suffering an appreciable loss in overall volumetric productivity.  相似文献   

11.
Trityl-glycidol was synthesized by in situ derivatization of glycidol, which was prepared by the catalytic asymmetric epoxidation of allyl alcohol. Depending on the enantiomer of diisopropyl tartrate used with the titanium catalyst, either (R)- or (S)-trityl-glycidol was obtained in a "one pot" synthesis in about 50% overall yield. The optical purity, determined by NMR spectroscopy of a Mosher ester, was greater than 98% ee. Nucleophilic opening of the chiral epoxide with dodecyl mercaptan gave optically active 1-S-dodecyl-3-O-trityl-1-thio-glycerol, which was used to synthesize 1-S-dodecyl-2-O-decanoyl-thio-sn-glycero-3-phosphocholine. Opening of the epoxide with methyl xanthate gave a 1,2-trithiocarbonate derivative of trityl glycerol which can be used to synthesize 1,2-bis(S-decanoyl)-1,2-dithio-sn-glycero-3-phosphocholine. Opening of the epoxide with thiodecanoic acid gave 1-S-decanoyl-3-O-trityl-1-thio-glycerol which was used to synthesize 1-S-decanoyl-2-O-decanoyl-1-thio-sn-glycero-3-phosphocholine.  相似文献   

12.
The trans rich isomer, 2-(phenyl)-3-(2-butyl-4-chloro-1H-imidazolyl)-5-butylate isoxazolidine A (>96% ee) was synthesized by the condensation of E isomer rich nitrone 4 (>98% ee) with butyl acrylate in an inert solvent. Obtained isoxazolidine was screened for its antifungal activity against Aspergillus niger, Cephalosporium acremonium, Fusarium moniliforme by using Nystatin as positive control. It was also tested for its antibacterial activity against Bacillus subtilis, Escherichia coli, and Staphylococcus aureus by using Streptomycin as positive control. Enhanced antifungal activity was observed in isoxazolidine of >96% ee compared to the isoxazolidine of >69% ee (B), and enhancement was not observed in antibacterial activity.  相似文献   

13.
The selective oxidation of aryl substrates to chiral cis-1,2-dihydrodiols is an industrially important reaction for the production of intermediates that can be used to produce fine chemicals, pharmaceuticals, and many other bioactive natural products. More specifically, the oxidation of naphthalene to produce optically pure (+)-cis-(1R,2S)-1,2-napthalene dihydrodiol (NDHD) to be used as a chiral synthon for specialty chemicals has gained much interest. Escherichia coli JM109(DE3) pDTG141 expresses naphthalene dioxygenase which catalyzes this reaction. Poor substrate solubility and substrate toxicity are barriers to using the power of these enzymes in large-scale aqueous whole cell systems. A biphasic reaction system was chosen to overcome these barriers. The optimal biphasic conditions for E. coli JM109(DE3) pDTG141 were determined to be 20% dodecane as the organic solvent containing 40 g/L naphthalene. The productivity of the biotransformation using resting cells was 1.75 g-diol/g-cdw/h for the first 6 h with 20% organic phase, which was increased from 0.59 g-diol/g-cdw/h for growing cells with 40% organic phase. The biocatalytic activity was retained for at least 12 h. The biocatalyst could be recycled for at least four runs in both suspended and immobilized form. The stability of the 12 h recycle was improved by immobilization in calcium alginate beads. The process has been improved both environmentally and economically by reducing the amount of solvent used and by recycling the biocatalyst.  相似文献   

14.
Yu L  Jin Y  Jianzhou  Ye C  Wang J  Hu G  Zeng S 《Chirality》2012,24(4):303-306
(1R, 3R)-1-(1, 3-Benzodioxol-5-yl)-2-(chloroacetyl)-2, 3, 4, 9-tetrahydro-1H-pyrido[3, 4-b]indole-3-carboxylic acid methyl ester ((1R, 3R)-Cpe) is a key intermediate used in the synthesis of tadalafil, a highly selective phosphodiesterase type-5 inhibitor. In the present study, a chiral high-performance liquid chromatography method was developed for the simultaneous determination of diastereoisomeric and enantiomeric impurities in (1R, 3R)-Cpe. Separation was performed on an Ultron ES-OVM chiral column (150 mm × 4.6 mm, 5 μm,) with a guard column at a column temperature of 30°C. The gradient elution used was acetonitrile (solvent A) and water (solvent B), and the following elution program was used at a flow rate of 1 ml/min: 0-5 min (80% B), 5-10 min (80-60% B), 10-12 min (60% B). The detection wavelength was 220 nm. The four isomers of Cpe were baseline separated in 12 min. The results of method validation indicated that the method was specific and sensitive and was suitable for the quality control of diastereoisomeric and enantiomeric impurities in (1R, 3R)-Cpe.  相似文献   

15.
Coordination of a chiral substrate to (meso‐salen)cobalt(II) nitrate and subsequent oxidation generates a Co(III) complex exhibiting a strong chiroptical readout that is attributed to spontaneous substrate‐to‐ligand chirality imprinting. The characteristic circular dichroism (CD) response of the (salen)cobalt complex can be used for enantiomeric analysis of a variety of chiral substrates based on a simple CD measurement at low concentration and without additional purification steps. This chirality sensing approach has potential for high‐throughput enantiomeric excess (ee) screening applications and minimizes solvent waste production. Chirality 26:379–384, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
A yeast strain, Candida tropicalis PBR-2, isolated from soil, is capable of carrying out the enantioselective reduction of N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine to (S)-N,N-dimethyl-3-hydroxy-3-(2-thienyl)-1-propanamine, a key intermediate in the synthesis of the chiral drug (S)-Duloxetine. The organism produced the enantiopure (S)-alcohol with a good yield (>80%) and almost absolute enantioselectivity, with an enantiomeric excess (ee) >99%. Parameters of the bioreduction reaction were optimized and the optimal temperature and pH for the reduction were found to be 30°C and 7.0, respectively. The optimized substrate and the resting cell concentration were 1 g/l and 250 g/l, respectively. The preparative-scale reaction using resting cells of C. tropicalis yielded the (S)-alcohol at 84–88% conversion and ee >99%.  相似文献   

17.
The first straightforward lipase-catalyzed enantioselective access to enantiomerically enriched tiaprofenic acid as a versatile method in chiral separation of racemates is demonstrated. The latter was directly monitored by enantioselective HPLC using a 3,5-dimethylphenylcarbamate derivative of cellulose-based chiral stationary phase namely Chiralpak IB (the immobilized version of Chiralcel OD). Non-standard HPLC organic solvents were used as diluent to dissolve the "difficult to dissolve" enzyme substrate (the acid) and as eluent for the simultaneous enantioselective HPLC baseline separation of both substrate and product in one run without any further derivatization. The existence of a non-standard HPLC organic solvent (e.g., methyl tert-butyl ether) in the mobile phase composition is mandatory to accomplish the simultaneous enantioselective HPLC baseline separation of both substrate and product.  相似文献   

18.
Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum catalyzes the enantioselective hydroxylation of 4-ethylphenol, 4-propylphenol, and 2-methoxy-4-propylphenol into 1-(4'-hydroxyphenyl)ethanol, 1-(4'-hydroxyphenyl)propanol, and 1-(4'-hydroxy-3'-methoxyphenyl)propanol, respectively, with an ee of 94% for the R enantiomer. The stereochemical outcome of the reactions was established by comparing the chiral GC retention times of the products to those of chiral alcohols obtained by the action of the lipases from Candida antarctica and Pseudomonas cepacia. Isotope labeling experiments revealed that the oxygen atom incorporated into the alcoholic products is derived from water. During the VAO-mediated conversion of 4-ethylphenol/4-propylphenol, 4-vinylphenol/4-propenylphenol are formed as side products. With 2-methoxy-4-propylphenol as a substrate, this competing side reaction is nearly abolished, resulting in less than 1% of the vinylic product, isoeugenol. The VAO-mediated conversion of 4-alkylphenols also results in small amounts of phenolic ketones indicative for a consecutive oxidation step. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

19.
Fluorescence quenching and preferential solvation of a coumarin derivative, namely 3‐[2‐oxo‐2‐(2‐oxo‐2H‐chromen‐3‐yl)‐ethylidene]‐1,3‐dihydro‐indol‐2‐one (3OCE), with aniline used as a quencher in solvent mixtures of acetonitrile (AN) and 1,4‐dioxane (DX) was carried out at steady state. Suppan's theory of dielectric enrichment was used to understand the nonideality and dielectric enrichment in AN–DX solvent mixtures. The effect of viscosity and dielectric constant variation at room temperature were analyzed. Quenching was characterized using Stern–Volmer plots with an upward curvature. It was found that 3OCE underwent combined static and dynamic quenching that was evident from the quenching rate parameters.  相似文献   

20.
Large-scale resolution of epoxides by the yeast Rhodotorula glutinis was demonstrated in an aqueous/organic two-phase cascade membrane bioreactor. Due to the chemical instability and low solubility of epoxides in aqueous phases, an organic solvent was introduced into the reaction mixture in order to enhance the resolution of epoxide. A cascade hollow-fiber membrane bioreactor was used (1) to minimize the toxicity of organic solvents towards the epoxide hydrolase of R. glutinis, and (2) to remove inhibitory amounts of formed diol from the yeast cell containing aqueous phase. Dodecane was selected as a suitable solvent and 1,2-epoxyhexane as a model substrate. By use of this membrane bioreactor, highly concentrated (0.9 M in dodecane) enantiopure (> 98% ee) (S)-1,2-epoxyhexane (6.5 g, 30% yield) was obtained from the racemic mixture. Received: 28 June 1999 / Received revision: 26 August 1999 / Accepted: 3 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号