首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tryptophan was isolated from rat feces as an active compound against ovalbumin permeation in an in vitro Caco-2 cell model. Tryptophan dose-dependently inhibited ovalbumin permeation with accompanying increase in transepithelial electric resistance, and its inhibitory activity reached a plateau at 10 mM. Brown Norway rats were sensitized by intragastric administration of ovalbumin together with or without tryptophan. Antibody levels specific to ovalbumin in the sera and proliferative responses of spleen mononuclear cells to ovalbumin were significantly lower in rats administered ovalbumin plus tryptophan than those administered ovalbumin alone. These results suggest that tryptophan suppresses oral sensitization to ovalbumin, probably via suppression of ovalbumin absorption from the intestinal tract.  相似文献   

2.
A 10 cm distal ileal intestinal perfusion technique was employed in Sprague-Dawley rats in situ. The perfused segment was removed, weighed, its surface area measured, homogenized, digested in HNO3 and assayed for L(1-14C)alanine and L-phenyl (1-14C)alanine. Steady state for L-alanine and L-phenylalanine absorption by the intact intestinal segment was observed at 10 and 15 min respectively. Exposure of the intestinal mucosa to 1 mM ouabain showed no effect on amino acid absorption. Preloading the intestinal epithelium with ouabain resulted in approximately 66% and 48% reduction in L-alanine and L-phenylalanine absorption respectively. Removal of Na from the buffer with and without exposure of the mucosa to 1 mM ouabain decreased absorption of L-alanine and L-phenylalanine by approximately 77% and 52% respectively. Removal of Na from the buffer and preloading the intestinal epithelium with ouabain resulted in approximately 85% and 81% reduction in L-alanine and L-phenylalanine absorption respectively. A 5, 10 and 25 fold increase in luminal L-alanine and L-phenylalanine concentration in Na-free choline Krebs Ringer after preloading with ouabain resulted in increase of amino acid absorption of approximately the same order of magnitude. Both an amino acid-carrier mediated transport process and a ouabain resistant Na-dependent-amino acid pump exist at the mucosal side. Both an ouabain sensitive Na-dependent-amino acid pump and an ouabain resistant Na-independent amino acid pump exist at the serosal side. Approximately 15-20% of absorbed amino acids are passively translocated.  相似文献   

3.
The dietary stress conditions such as starvation influenced Na+K+-ATPase activity which increased steadily above normal fed levels between the starvation periods of 24--48 hr. Also, an increased enzyme level was observed in alloxan diabetic rats and administration of insulin to diabetic rats led to a tendency towards a lowering of Na+K+-ATPase. Adrenalectomy brought about a lowering of Na+K+-ATPase activity from those of normals while the administration of hydrocortisone induced an enhancement. The results indicate that both starvation and diabetic conditions might cause a stress-like activation of adrenal cortex resulting in increased levels of glucocorticoids which in turn activate the intestinal Na+K+-ATPase activity.  相似文献   

4.
Glucagon administered subcutaneously to rats for 10 days had no significant effect on liver phenylalanine hydroxylase activity, but induced liver dihydropteridine reductase more than twofold. In rats administered a phenylalanine load orally, glucagon treatment stimulated oxidation and depressed urinary phenylalanine excretion. These responses could not be related to an effect of glucagon on hepatic tyrosine-alpha-oxoglutarate aminotransferase activity. Even in rats with phenylalanine hydroxylase activity depressed to 50% of control values by p-chlorophenylalanine administration, glucagon treatment increased the phenylalanine-oxidation rate substantially. Although hepatic phenylalanine-pyruvate aminotransferase was increased tenfold in glucagon-treated rats, glucagon treatment did not increase urinary excretion of phenylalanine transamination products by rats given a phenylalanine load. Glucagon treatment did not affect phenylalanine uptake by the gut or liver, or the liver content of phenylalanine hydroxylase cofactor. It is suggested that dihydropteridine reductase is the rate-limiting enzyme in phenylalanine degradation in the rat, and that glucagon may regulate the rate of oxidative phenylalanine metabolism in vivo by promoting indirectly the maintenance of the phenylalanine hydroxylase cofactor in its active, reduced state.  相似文献   

5.
T Hirano  M Homma  K Oka  T Naito  K Hosaka  H Mitsuhashi 《Life sciences》1991,49(25):1871-1878
Diuretic properties of a synthetic lignan, 2,3-dibenzylbutane-1,4-diol (hattalin), and a naturally occurring arctigenin were examined in BALB/c male mice and Wistar male rats. Intra peritoneal administration of hattalin (50 mg/kg) in mice increased urine volume by 1.7-3.1 fold that of placebo-treated animals 40-260 min after administration (p less than 0.05 vs control). In contrast, 100 mg/kg of arctigenin had no effect on urine volume in mice. Hattalin (100 mg/kg), arctigenin (100 mg/kg), or furosemide (50 mg/kg) as a positive control was administered orally to rats, and accumulated urine volume was measured for up to 6-12 h. The urine volume of animals administered with hattalin showed 1.4-1.5 fold that of placebo-treated animals after 2-6 h of administration (P less than 0.05, n = 10). On the other hand, arctigenin showed no significant effect on urine volume for up to 12 h after administration (n = 8). The urine volume in animals administered with furosemide (n = 10) was 2.0-3.0 fold that of placebo-treated animals (P less than 0.01). Furosemide increased total Na+, K+, or Cl- excretion by 1.9, 1.8 or 2.2 fold, respectively, when compared with placebo-treated controls (P less than 0.01), whereas hattalin decreased Na+ excretion by 3.6 times (P less than 0.01), K+ excretion by 1.4 times (not significant), and Cl- excretion by 3.1 times (P less than 0.01). Serum Na+ and K+ levels did not change in both furosemide- and hattalin-administered rats, however, serum Cl- levels in these animals significantly decreased (P less than 0.01) when compared with controls. The results suggest that the diuretic property of hattalin is due to a novel mechanism which is different from that of furosemide or other diuretics modifying the ion-exchange at the uriniferous tubules.  相似文献   

6.
We have earlier shown that the renal dopaminergic system failed to respond to high salt (HS) intake in old (24-month-old) Fisher 344 rats (Hypertension 1999;34:666-672). In the present study, intestinal Na+,K+-ATPase activity and intestinal dopaminergic tonus were evaluated in adult and old Fischer 344 rats during normal salt (NS) and HS intake. Basal intestinal Na+,K+-ATPase activity (nmol Pi/mg protein/min) in adult rats (142+/-6) was higher than in old Fischer 344 rats (105+/-7). HS intake reduced intestinal Na+,K+-ATPase activity by 20% (P<0.05) in adult, but not in old rats. Dopamine (1 microM) failed to inhibit intestinal Na+,K+-ATPase activity in both adult and old Fischer 344 rats (NS and HS diets). In adult animals, co-incubation of pertussis toxin with dopamine (1 microM) produced a significant inhibitory effect in the intestinal Na+,K+-ATPase activity. L-DOPA and dopamine tissue levels in the intestinal mucosa of adult rats were higher (45+/-9 and 38+/-4 pmol/g) than those in old rats (27+/-9 and 14+/-1 pmol/g). HS diet did not change L-DOPA and DA levels in both adult and old rats. DA/L-DOPA tissue ratios, an indirect measure of dopamine synthesis, were higher in old (1.1+/-0.2) than in adult rats (0.6+/-0.1). Aromatic L-amino acid decarboxylase (AADC) activity in the intestinal mucosa of old rats was higher than in adult rats. HS diet increased the AADC activity in adult rats, but not in old rats. It is concluded that intestinal dopaminergic tonus in old Fisher 344 rats is higher than in adult rats and is accompanied by lower basal intestinal Na+,K+-ATPase activity. In old rats, HS diet failed to alter the intestinal dopaminergic tonus or Na+,K+-ATPase activity, whereas in adult rats increases in AADC activity were accompanied by decreases in Na+,K+-ATPase activity. The association between salt intake, increased dopamine formation and inhibition of Na+,K+-ATPase at the intestinal level was not as straightforward as that described in renal tissues.  相似文献   

7.
The influence of tea catechins on the absorption of starch or sucrose was investigated in vivo. Tea catechins were administered orally to rats before soluble starch or sucrose administration. Saccharide-dosed rats were killed and the blood and the contents of the intestine were collected at intervals over two hours. Catechins of certain concentrations suppressed the increase of plasma glucose levels, thus concurrently suppressing insulin activity. Increased activity of intestinal α-amylase by starch dosing was inhibited markedly in the catechin-administered rats. Sucrase on the brush border membrane was also inhibited by prior catechin administration. From these results it was assumed that orally administered catechins will inhibit intestinal α-amylase or sucrase, thereby deterring the digestion of certain amounts of starch or sucrose and eventually reducing the plasma glucose levels.  相似文献   

8.
A series of experiments was conducted to determine how dietary protein, alfalfa, or zeolite influence the excretory patterns of zearalenone (Z), a uterotropic mycotoxin synthesized by Fusarium fungi. Rats were fed diets containing 16.3% casein, 40% casein, 11.2% casein + 25% alfalfa, or 25% casein + 25% alfalfa. Also fed were diets containing 0, 1, 2, or 5% anion exchange zeolite. Tracer doses of [3H]Z were administered either as a constituent of the diet or as a topical application on the skin at the base of the skull. When Z was administered orally, no differences were seen in the fraction of the dose excreted in urine or feces as a result of varying dietary levels of alfalfa and protein. Topical doses resulted in rats fed 25% casein + 25% alfalfa or 40% casein excreting more Z in urine than those fed 25% alfalfa or 16.3% casein. Fecal excretion of Z was greatest for rats fed 25% casein + 25% alfalfa whereas rats fed 40% casein excreted more fecal Z than those fed 16.3% casein. Feeding Z to rats receiving dietary zeolite resulted in a positive correlation between dietary zeolite and fecal excretion of Z but a negative correlation with urinary excretion of Z. Topical administration of Z produced a positive correlation between dietary zeolite and fecal Z excretion but no effect on urinary excretion. It may be concluded that protein and alfalfa treatments alleviate Z toxicosis through increased metabolism whereas zeolite binds Z in the digestive tract to prevent absorption.  相似文献   

9.
Vitamin C and flavonoids, polyphenols with uncertain function, are abundant in fruits and vegetables. We postulated that flavonoids have a novel regulatory action of delaying or inhibiting absorption of vitamin C and glucose, which are structurally similar. From six structural classes of flavonoids, at least 12 compounds were chosen for studies. We investigated the effects of selected flavonoids on the intestinal vitamin C transporter SVCT1(h) by transfecting and overexpressing SVCT1(h) in Chinese hamster ovary cells. Flavonoids reversibly inhibited vitamin C transport in transfected cells with IC(50) values of 10-50 microm, concentrations expected to have physiologic consequences. The most potent inhibitor class was flavonols, of which quercetin is most abundant in foods. Because Chinese hamster ovary cells have endogenous vitamin C transport, we expressed SVCT1(h) in Xenopus laevis oocytes to study the mechanism of transport inhibition. Quercetin was a reversible and non-competitive inhibitor of ascorbate transport; K(i) 17.8 microm. Quercetin was a potent non-competitive inhibitor of GLUT2 expressed in Xenopus oocytes; K(i) 22.8 microm. When diabetic rats were administered glucose with quercetin, hyperglycemia was significantly decreased compared with administration of glucose alone. Quercetin also significantly decreased ascorbate absorption in normal rats given ascorbate plus quercetin compared with rats given ascorbate alone. Quercetin was a specific transport inhibitor, because it did not inhibit intestinal sugar transporters GLUT5 and SGLT1 that were injected and expressed in Xenopus oocytes. Quercetin inhibited but was not transported by SVCT1(h). Considered together, these data show that flavonoids modulate vitamin C and glucose transport by their respective intestinal transporters and suggest a new function for flavonoids.  相似文献   

10.
1. Rates of appearance and oxidation of plasma L-leucine, L-phenylalanine and L-tyrosine, as well as conversion of plasma phenylalanine into plasma tyrosine, were determined in 90-120 g rats after overnight starvation and while receiving 115-120 mumol of L-phenylalanine/h. 2. In the post-absorptive state, plasma tyrosine and phenylalanine appearances were similar, despite the fact that 22% of plasma tyrosine appearance could be attributed to the hydroxylation of phenylalanine. 3. A constant infusion of 115-120 mumol of L-phenylalanine/h did not significantly alter plasma leucine kinetics, but increased appearance of plasma phenylalanine and tyrosine. The percentage of phenylalanine and tyrosine appearance that was oxidized increased from 12.1% and 24.4% to 37.3% and 48.0% respectively. In phenylalanine-loaded rats, 72% of plasma tyrosine appearance could be attributed to the conversion of phenylalanine. 4. Whole-body tyrosine oxidation measured from a continuous infusion of either L-[14C]tyrosine or L-[14C]phenylalanine differed by 165%. 5. It can be concluded that, in the post-absorptive state, phenylalanine hydroxylation makes a substantial contribution to the plasma appearance of tyrosine and is significantly increased when phenylalanine is administered. The disposal of excess infused phenylalanine is a result of a greater percentage of plasma phenylalanine being converted into tyrosine and a greater proportion of tyrosine being further oxidized. However, apparent tyrosine oxidation rates estimated from plasma tyrosine specific radioactivities and appearance of expired 14CO2 during administration of [14C]tyrosine are underestimates of true rates, in part because tyrosine generated from phenylalanine hydroxylation is catabolized without freely equilibrating with the plasma compartment.  相似文献   

11.
The administration of 1.5 or 9.0 mmoles/kg ip of maleate to rats induced, in addition to renal alterations similar to those occurring in the Fanconi syndrome, a decline in the intestinal mucosa (Na+-K+)-ATPase with a simultaneous decrease in sodium intestinal transport and an increase in potassium absorption. Further differences in the behavior of the two electrolytes were observed when the concentration of sodium in the perfusates was altered. No changes occurred in amino acid or glucose transport in experimental animals.  相似文献   

12.
Vanadate alters intestinal transport and may have a role in regulating cell function. To determine whether it influences calcium absorption, we tested the effects of acute and chronic vanadate administration on calcium absorption using single-pass perfusion of jejunal and ileal segments of the in vivo rat intestine. Acute vanadate administration increased the lumen-to-mucosa and net fluxes of calcium in both the jejunum and ileum. The increase was largely due to an enhancement of the saturable fluxes of calcium and was observed at 10(-4) M concentration of vanadate, but not at higher or lower concentrations of the oxyanion, except at the highest concentration used, 10(-2) M, where calcium absorption was inhibited. Chronic vanadate administration caused, on the other hand, no changes in calcium absorption. We have demonstrated previously that rat intestinal (Na+ + K+)-ATPase is inhibited by vanadate, an effect that could raise cell sodium and increase the efflux of sodium across the brush border membrane. The results suggest that the vanadate enhancement of calcium absorption may be related to an increased entry of calcium into the mucosa, possibly as a result of an augmented exchange through the Na+/Ca+ antiport system. Alternatively, vanadate may influence access to a calcium channel in the mucosal membrane of the intestinal epithelium, leading to the observed increase in absorption.  相似文献   

13.
Inhibition of water-sodium intestinal absorption by an atrial extract   总被引:3,自引:0,他引:3  
The rat atrium contains a diuretic and natriuretic factor which appears to inhibit the sodium reabsorption in the kidney tubules. We observed, in rats, that our atrial extract possesses a potent diuretic and natriuretic effect that was accompanied by an increased dextrose excretion. Similarly, extracts of rat atria, but not of ventricles, reduced intestinal absorption of water, sodium, and dextrose. The omission of sodium or dextrose in the perfusion fluid annulled this effect. These data suggest that the substance inhibiting the intestinal absorption of water and solutes is probably atrial natriuretic factor and that it acts on the sodium-dextrose cotransport mechanism.  相似文献   

14.
Glucosyl hesperidin (G-hesperidin) is a water-soluble derivative of hesperidin. We compared the absorption and metabolism of G-hesperidin with those of hesperidin in rats. After oral administration of G-hesperidin or hesperidin to rats, hesperetin was detected in sera hydrolyzed with beta-glucuronidase, but it was not detectable in unhydrolyzed sera. Serum hesperetin was found more rapidly in rats administered G-hesperidin than in those administered hesperidin. The area under the concentration-time curve for hesperetin in the sera of rats administered G-hesperidin was approximately 3.7-fold greater than that of rats administered hesperidin. In the urine of both administration groups, hesperetin and its glucuronide were found. Urinary excretion of metabolites was higher in rats administered G-hesperidin than in those administered hesperidin. These results indicate that G-hesperidin presents the same metabolic profile as hesperidin. Moreover, it was concluded that G-hesperidin is absorbed more rapidly and efficiently than hesperidin, because of its high water solubility.  相似文献   

15.
Oral and intravenous L-phenylalanine loading tests were performed in 13 Parkinsonian patients and in 12 control subjects matched for age and weight. The results showed a normal intestinal absorption and a normal elimination from plasma of phenylalanine in the Parkinsonian patients.  相似文献   

16.
Glucosyl hesperidin (G-hesperidin) is a water-soluble derivative of hesperidin. We compared the absorption and metabolism of G-hesperidin with those of hesperidin in rats. After oral administration of G-hesperidin or hesperidin to rats, hesperetin was detected in sera hydrolyzed with β-glucuronidase, but it was not detectable in unhydrolyzed sera. Serum hesperetin was found more rapidly in rats administered G-hesperidin than in those administered hesperidin. The area under the concentration-time curve for hesperetin in the sera of rats administered G-hesperidin was approximately 3.7-fold greater than that of rats administered hesperidin. In the urine of both administration groups, hesperetin and its glucuronide were found. Urinary excretion of metabolites was higher in rats administered G-hesperidin than in those administered hesperidin. These results indicate that G-hesperidin presents the same metabolic profile as hesperidin. Moreover, it was concluded that G-hesperidin is absorbed more rapidly and efficiently than hesperidin, because of its high water solubility.  相似文献   

17.
From mouse fecal material we have isolated four strictly anaerobic bacteria which, when associated with germfree mice or rats, reduced the cecal volume by 80 and 60%, respectively. This cecal volume-reducing flora did not metabolize estrone-3-sulfate, taurolithocholate-3-sulfate or taurolithocholate but gnotobiotic rats associated with this particular flora (CRF-rats) excreted these compounds faster in feces plus urine than did germfree rats. The time needed for 50% excretion (t1/2) of orally administered estrone-3-sulfate was 32 h in germfree rats versus 13 h in CRF rats; for intraperitoneally injected taurolithocholate-3-sulfate the t1/2 was 63 h in germfree versus 17 h in CRF rats and for taurolithocholate the t1/2 was 199 h in germfree and 96 h in CRF rats. Association of germfree rats with the cecal volume-reducing flora did not change the cecal absorption rate of estrone-3-sulfate, but shortened the 50% small intestinal transit time of [14C]PEG from 10 to 3 h; a value also found in conventional rats. These results stress the important influence of the intestinal microflora on the absorption and excretion of steroids via its effect on the physiology of the whole intestinal tract and point to the deficiencies inherent to the use of germfree animals in excretion studies.  相似文献   

18.
The K+-stimulated phosphatase activity of microsomes from rat kidney was not inhibited by L-phenylalanine, but the HCO3-stimulated phosphatase activity was markedly inhibited by L-phenylalanine. Valinomycin enhanced the HCO3-stimulated phosphatase activity, but did not enhance the K+-stimulated phosphatase activity. Ouabain did not inhibit the HCO3-stimulated phosphatase activity, but inhibited the K+-stimulated phosphatase activity. The renal K+-stimulated phosphatase activity was suppressed to 40% of the control values by adrenalectomy, but the renal HCO3-stimulated phosphatase activity was little suppressed by adrenalectomy. The renal K+-stimulated phosphatase activity in intact and adrenalectomized rats was found to be significantly elevated, in a manner similar to the elevation of the renal (Na+ + K+)-ATPase activity by aldosterone treatment (P less than 0.02).  相似文献   

19.
Abstract— Thresholds to the first appearance of a myoclonic jerk and to the appearance of tonic-clonic seizures induced by the convulsant, hexafiuorodiethyl ether, were examined in immature rats at sequential time intervals following the administration of L-tyrosine, L-phenylalanine, Na-phenylpyruvate and several forms of vitamin B6. l -Tyrosine failed to lower either seizure threshold even though plasma and brain levels of tyrosine exceeded those obtained with a dose of phenylalanine that was effective in lowering threshold. Na-phenylpyruvate lowered both seizure thresholds at a time that correlated with elevation of brain phenylalanine. Pyridoxine hydrochloride, pyridoxal-5′-phosphate and pyridoxamine phosphate all lowered both seizure thresholds. The time course and dose dependency of the effects of B6 vitamers were examined; the effect of phenylalanine on seizure threshold was unrelated to derived tyrosine or phenylpyruvate and vitamin B6 was not involved. The enhanced cerebral excitability following administration of B6 vitamers is discussed.  相似文献   

20.
The inhibitory properties of beta-2-thienyl-dl-alanine on rat phenylalanine hydroxylase from crude liver and kidney homogenates were assessed in vitro and in vivo, as well as its effects on the intestinal transport of phenylalanine, by using a perfusion procedure in vivo. The apparent K(m) for liver phenylalanine hydroxylase changed from 0.61mm in the absence of the inhibitor to 2.70mm in the presence of 24mm-beta-2-thienyl-dl-alanine, with no significant change in the V(max.). For kidney the corresponding values were 0.50 and 1.60mm respectively. A single dose of beta-2-thienyl-dl-alanine (2mmol/kg) failed to inhibit phenylalanine hydroxylase in either organ. Repeated injections during a 4-day period caused a decline of the enzymic activity to about 40% of controls. Intestinal absorption of phenylalanine when perfused at 0.2-2.0mm concentration was also competitively inhibited by beta-2-thienyl-dl-alanine. Its K(i) value was estimated at 81mm. The limited inhibitory effects of beta-2-thienyl-dl-alanine towards hepatic phenylalanine hydroxylase and phenylalanine intestinal transport, and its rapid metabolism, as suggested by the small elimination of this compound in the urine and its virtual absence from animal tissues, are factors that restrict its potential usefulness as an inducer of phenylketonuria in rats or as an effective blocker of phenylalanine absorption by the gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号