首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang C  Cai Z  Kim YC  Kumar R  Yuan F  Shi PY  Kao C  Luo G 《Journal of virology》2005,79(14):8687-8697
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses multiple enzyme activities. The N-terminal one-third of NS3 primarily functions as a serine protease, while the remaining two-thirds of NS3 serve as a helicase and nucleoside triphosphatase. Whether the multiple enzyme activities of NS3 are functionally interdependent and/or modulated by other viral NS proteins remains unclear. We performed biochemical studies to examine the functional interdependence of the NS3 protease and helicase domains and the modulation of NS3 helicase by NS5B, an RNA-dependent RNA polymerase (RdRp). We found that the NS3 protease domain of the full-length NS3 (NS3FL) enhances the NS3 helicase activity. Additionally, HCV RdRp stimulates the NS3FL helicase activity by more than sevenfold. However, the helicase activity of the NS3 helicase domain was unaffected by HCV RdRp. Glutathione S-transferase pull-down as well as fluorescence anisotropy results revealed that the NS3 protease domain is required for specific NS3 and NS5B interaction. These findings suggest that HCV RdRp regulates the functions of NS3 during HCV replication. In contrast, NS3FL does not increase NS5B RdRp activity in vitro, which is contrary to a previously published report that the HCV NS3 enhances NS5B RdRp activity.  相似文献   

2.
Hepatitis C virus (HCV) infects over 170 million persons worldwide. It is the leading cause of liver disease in the U.S. and is responsible for most liver transplants. Current treatments for this infectious disease are inadequate; therefore, new therapies must be developed. Several labs have obtained evidence for a protein complex that involves many of the nonstructural (NS) proteins encoded by the virus. NS3, NS4A, NS4B, NS5A, and NS5B appear to interact structurally and functionally. In this study, we investigated the interaction between the helicase, NS3, and the RNA polymerase, NS5B. Pull-down experiments and surface plasmon resonance data indicate a direct interaction between NS3 and NS5B that is primarily mediated through the protease domain of NS3. This interaction reduces the basal ATPase activity of NS3. However, NS5B stimulates product formation in RNA unwinding experiments under conditions of excess nucleic acid substrate. When the concentrations of NS3 and NS5B are in excess of nucleic acid substrate, NS5B reduces the rate of NS3-catalyzed unwinding. Under pre-steady-state conditions, in which NS3 and substrate concentrations are similar, product formation increased in the presence of NS5B. The increase was consistent with 1:1 complex formed between the two proteins. A fluorescently labeled form of NS3 was used to investigate this interaction through fluorescence polarization binding assays. Results from this assay support interactions that include a 1:1 complex formed between NS3 and NS5B. The modulation of NS3 by NS5B suggests that these proteins may function together during replication of the HCV genome.  相似文献   

3.
Hepatitis C virus (HCV) NS5B is RNA-dependent RNA polymerase (RdRP), the essential catalytic enzyme for HCV replication. Recently, NS5A has been reported to be important for the establishment of HCV replication in vitro by the adaptive mutations, although its role in viral replication remains uncertain. Here we report that purified bacterial recombinant NS5A and NS5B directly interact with each other in vitro, detected by glutathione S-transferase (GST) pull-down assay. Furthermore, complex formation of these proteins transiently coexpressed in mammalian cells was detected by coprecipitation. Using terminally and internally truncated NS5A, two discontinuous regions of NS5A (amino acids 105-162 and 277-334) outside of the adaptive mutations were identified to be independently essential for the binding both in vivo and in vitro (Yamashita, T., Kaneko, S., Shirota, Y., Qin, W., Nomura, T., Kobayashi, K., and Mkyrakami, S. (1998) J. Biol. Chem. 273, 15479-15486). We previously examined the effect of His-NS5A on RdRP activity of the soluble recombinant NS5Bt in vitro (see Yamashita et al. above). Wild NS5A weakly stimulated at first (when less than 0.1 molar ratio to NS5B) and then inhibited the NS5Bt RdRP activity in a dose-dependent manner. The internal deletion mutants defective in NS5B binding exhibited no inhibitory effect, indicating that the NS5B binding is necessary for the inhibition. Taken together, our results support the idea that NS5A modulates HCV replication as a component of replication complex.  相似文献   

4.
Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn(2+) than in the presence of Mg(2+). When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a "copy-back" mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3' end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (>/=50 microM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.  相似文献   

5.
6.
Shim JH  Larson G  Wu JZ  Hong Z 《Journal of virology》2002,76(14):7030-7039
De novo RNA synthesis by hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase has been investigated using short RNA templates. Various templates including those derived from the HCV genome were evaluated by examining the early steps of de novo RNA synthesis. NS5B was shown to be able to produce an initiation dinucleotide product from templates as short as 4-mer and from the 3'-terminal sequences of both plus and minus strands of the HCV RNA genome. GMP, GDP, and guanosine were able to act as an initiating nucleotide in de novo RNA synthesis, indicating that the triphosphate moiety is not absolutely required by an initiating nucleotide. Significant amounts of the initiation product accumulated in de novo synthesis, and elongation from the dinucleotide was observed when large amounts of dinucleotide were available. This result suggests that NS5B, a template, and incoming nucleotides are able to form an initiation complex that aborts frequently by releasing the dinucleotide product before transition to an elongation complex. The transition is rate limiting. Furthermore, we discovered that the secondary structure of a template was not essential for de novo initiation and that 3'-terminal bases of a template conferred specificity in selection of an initiation site. Initiation can occur at the +1, +2, or +3 position numbered from the 3' end of a template depending on base composition. Pyrimidine bases at any of the three positions are able to serve as an initiation site, while purine bases at the +2 and +3 positions do not support initiation. This result implies that HCV possesses an intrinsic ability to ensure that de novo synthesis is initiated from the +1 position and to maintain the integrity of the 3' end of its genome. This assay system should be an important tool for investigating the detailed mechanism of de novo initiation by HCV NS5B as well as other viral RNA polymerases.  相似文献   

7.
Dengue virus type 2 (DEN2), a member of the Flaviviridae family, is a re-emerging human pathogen of global significance. DEN2 nonstructural protein 3 (NS3) has a serine protease domain (NS3-pro) and requires the hydrophilic domain of NS2B (NS2BH) for activation. NS3 is also an RNA-stimulated nucleoside triphosphatase (NTPase)/RNA helicase and a 5'-RNA triphosphatase (RTPase). In this study the first biochemical and kinetic properties of full-length NS3 (NS3FL)-associated NTPase, RTPase, and RNA helicase are presented. The NS3FL showed an enhanced RNA helicase activity compared with the NS3-pro-minus NS3, which was further enhanced by the presence of the NS2BH (NS2BH-NS3FL). An active protease catalytic triad is not required for the stimulatory effect, suggesting that the overall folding of the N-terminal protease domain contributes to this enhancement. In DEN2-infected mammalian cells, NS3 and NS5, the viral 5'-RNA methyltransferase/polymerase, exist as a complex. Therefore, the effect of NS5 on the NS3 NTPase activity was examined. The results show that NS5 stimulated the NS3 NTPase and RTPase activities. The NS5 stimulation of NS3 NTPase was dose-dependent until an equimolar ratio was reached. Moreover, the conserved motif, 184RKRK, of NS3 played a crucial role in binding to RNA substrate and modulating the NTPase/RNA helicase and RTPase activities of NS3.  相似文献   

8.
The enzymatic activity of hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is modulated by the molar ratio of NS5B enzyme and RNA template. Depending on the ratio, either template or enzyme can inhibit activity. Inhibition of NS5B activity by RNA template exhibited characteristics of substrate inhibition, suggesting the template binds to a secondary site on the enzyme forming an inactive complex. Template inhibition was modulated by primer. Increasing concentrations of primer restored NS5B activity and decreased the affinity of template for the secondary site. Conversely, increasing template concentration reduced the affinity of primer binding. The kinetic profiles suggest template inhibition results from the binding of template to a site that interferes with primer binding and the formation of productive replication complexes.  相似文献   

9.
HCV NS5B is an RNA-dependent RNA polymerase (RdRP), a central catalytic enzyme for HCV replication, which has the "palm and fingers" substructure. We recently identified five novel residues critical for RdRP activity (Qin, W., Yamashita, T., Shirota, Y., Lin, Y., Wei, W., and Murakami, S. (2001) Hepatology 33, 728-737). Among them, GLU-18 and His-502, far from the catalytic center, may be involved in conformational change(s) for RdRP activity as addressed in some palm and fingers enzymes. We examined the possibility that NS5B is oligomerized, and we could detect the interaction between two different tagged NS5B proteins in vitro and transiently expressed in mammalian cells. By scanning 27 clustered and then point alanine substitutions in vivo and in vitro, Glu-18 and His-502 were found to be critical for the homomeric interaction in vivo and in vitro, strongly suggesting a close relationship between the oligomerization and RdRP activity of NS5B. All mutants with substitutions at these two residues failed to bind wild type NS5B, however E18H interacted with H502E in vitro and in vivo. Interestingly, the NS5B protein with E18H or H502E did not exhibit RdRP activity, but a mixture of the two mutant proteins did. These results clearly indicate that two residues of HCV NS5B are critical for the oligomerization that is prerequisite to RdRP activity.  相似文献   

10.
The function of NS4B is incompletely understood. The aim of the study is to understand the influence of NS4B on anti-viral response. After cell line stably expressing NS4B established, the influence of IFN-alpha of different concentration on VSV was studied using plaque assay; cell expression profiling caused by NS4B was studied using DNA microarray, and the IFNGR1 fluorescence intensity was analyzed. Our data showed that HCV-NS4B could suppress immuno-associated gene expression, in particular, IFN-gamma receptor signal transduction-related genes. Taken together, NS4B could play some roles in HCV resistance to IFN therapy.  相似文献   

11.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), is believed to form a membrane-associated RNA replication complex together with other nonstructural proteins and as yet unidentified host components. However, the determinants for membrane association of this essential viral enzyme have not been defined. By double label immunofluorescence analyses, NS5B was found in the endoplasmic reticulum (ER) or an ER-like modified compartment both when expressed alone or in the context of the entire HCV polyprotein. The carboxyl-terminal 21 amino acid residues were necessary and sufficient to target NS5B or a heterologous protein to the cytosolic side of the ER membrane. This hydrophobic domain is highly conserved among 269 HCV isolates analyzed and predicted to form a transmembrane alpha-helix. Association of NS5B with the ER membrane occurred by a posttranslational mechanism that was ATP-independent. These features define the HCV RdRp as a new member of the tail-anchored protein family, a class of integral membrane proteins that are membrane-targeted posttranslationally via a carboxyl-terminal insertion sequence. Formation of the HCV replication complex, therefore, involves specific determinants for membrane association that represent potential targets for antiviral intervention.  相似文献   

12.
Ribavirin is administered in combination with interferon-alpha for treatment of hepatitis C virus (HCV) infection. Recently, we demonstrated that the antiviral activity of ribavirin can result from the ability of a viral RNA polymerase to utilize ribavirin triphosphate and to incorporate this nucleotide with reduced specificity, thereby mutagenizing the genome and decreasing the yield of infectious virus (Crotty, S., Maag, D., Arnold, J. J., Zhong, W., Lau, J. Y., Hong, Z., Andino, R., and Cameron, C. E. (2000) Nat. Med. 6, 1375-1379). In this study, we performed a quantitative analysis of a novel HCV RNA polymerase derivative that is capable of utilizing stably annealed primer-template substrates and exploited this derivative to evaluate whether lethal mutagenesis of the HCV genome is a possible mechanism for the anti-HCV activity of ribavirin. These studies demonstrate HCV RNA polymerase-catalyzed incorporation of ribavirin opposite cytidine and uridine. In addition, we demonstrate that templates containing ribavirin support CMP and UMP incorporation with equivalent efficiency. Surprisingly, templates containing ribavirin can also cause a significant block to RNA elongation. Together, these data suggest that ribavirin can exert a direct effect on HCV replication, which is mediated by the HCV RNA polymerase. We discuss the implications of this work on the development of nucleoside analogs for treatment of HCV infection.  相似文献   

13.
C L Tai  W K Chi  D S Chen    L H Hwang 《Journal of virology》1996,70(12):8477-8484
To assess the RNA helicase activity of hepatitis C virus (HCV) nonstructural protein 3 (NS3), a polypeptide encompassing amino acids 1175 to 1657, which cover only the putative helicase domain, was expressed in Escherichia coli by a pET expression vector. The protein was purified to near homogeneity and assayed for RNA helicase activity in vitro with double-stranded RNA substrates prepared from a multiple cloning sequence and an HCV 5' nontranslated region (5'-NTR) or 3'-NTR. The enzyme acted successfully on substrates containing both 5' and 3' single-stranded regions (standard) or on substrates containing only the 3' single-stranded regions (3'/3') but failed to act on substrates containing only the 5' single-stranded regions (5'/5') or on substrates lacking the single-stranded regions (blunt). These results thus suggest 3' to 5' directionality for HCV RNA helicase activity. However, a 5'/5' substrate derived from the HCV 5'-NTR was also partially unwound by the enzyme, possibly because of unique properties inherent in the 5' single-stranded regions. Gel mobility shift analyses demonstrated that the HCV NS3 helicase could bind to either 5'- or 3'-tailed substrates but not to substrates lacking a single-stranded region, indicating that the polarity of the RNA strand to which the helicase bound was a more important enzymatic activity determinant. In addition to double-stranded RNA substrates, HCV NS3 helicase activity could displace both RNA and DNA oligonucleotides on a DNA template, suggesting that HCV NS3 too was disposed to DNA helicase activity. This study also demonstrated that RNA helicase activity was dramatically inhibited by the single-stranded polynucleotides. Taken altogether, our results indicate that the HCV NS3 helicase is unique among the RNA helicases characterized so far.  相似文献   

14.
The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of approximately 22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 A. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data.  相似文献   

15.
The hepatitis C virus nonstructural 3 protein (NS3) possesses a serine protease activity in the N-terminal one-third, whereas RNA-stimulated NTPase and helicase activities reside in the C-terminal portion. The serine protease activity is required for proteolytic processing at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B polyprotein cleavage sites. NS3 forms a complex with NS4A, a 54-residue polypeptide that was shown to act as an essential cofactor of the NS3 protease. We have expressed in Escherichia coli the NS3-NS4A precursor; cleavage at the junction between NS3 and NS4A occurs during expression in the bacteria cells, resulting in the formation of a soluble noncovalent complex with a sub-nanomolar dissociation constant. We have assessed the minimal ionic strength and detergent and glycerol concentrations required for maximal proteolytic activity and stability of the purified NS3-NS4A complex. Using a peptide substrate derived from the NS5A-NS5B junction, the catalytic efficiency (kcat/Km) of NS3-NS4A-associated protease under optimized conditions was 55 000 s-1 M-1, very similar to that measured with a recombinant complex purified from eukaryotic cells. Dissociation of the NS3-NS4A complex was found to be fully reversible. No helicase activity was exhibited by the purified NS3-NS4A complex, but NS3 was fully active as a helicase upon dissociation of NS4A. On the other hand, both basal and poly(U)-induced NTPase activity and ssRNA binding activity associated with the NS3-NS4A complex were very similar to those exhibited by NS3 alone. Therefore, NS4A appears to uncouple the ATPase/ssRNA binding and RNA unwinding activities associated with NS3.  相似文献   

16.
17.
NS5B of the hepatitis C virus is an RNA template-dependent RNA polymerase and therefore the key player of the viral replicase complex. Using a highly purified enzyme expressed with recombinant baculoviruses in insect cells, we demonstrate a stimulation of RNA synthesis up to 2 orders of magnitude by high concentrations of GTP but not with ATP, CTP, UTP, GDP, or GMP. Enhancement of RNA synthesis was found with various heteropolymeric RNA templates, with poly(C)-oligo(G)12 but not with poly(A)-oligo(U)12. Several amino acid substitutions in polymerase motifs B, C, and D previously shown to be crucial for RdRp activity were tested for GTP stimulation of RNA synthesis. Most of these mutations, in particular those affecting the GDD motif (motif C) strongly reduced or completely abolished activation by GTP, suggesting that the same NTP-binding site is used for stimulation and RNA synthesis. Since GTP did not affect the overall RNA binding properties or the elongation rate, high concentrations of GTP appear to accelerate a rate-limiting step at the level of initiation of RNA synthesis. Finally, enhancement of RNA synthesis by high GTP concentrations was also found with NS5B of the pestivirus classical swine fever virus, but not with the 3D polymerase of poliovirus. Thus, stimulation of RdRp activity by GTP is evolutionarily conserved between the closely related hepaciviruses and pestiviruses but not between these and the more distantly related picornaviruses.  相似文献   

18.
The nonstructural protein 3 (NS3) of hepatitis C virus contains a protease domain at its amino terminus and RNA helicase domain at its carboxyl terminus. To identify optimal NS3 protein for developing screening assays, we expressed full-length NS3 protease/helicase and helicase domains from both HCV type 1a (H77 strain) and 1b (Con1 strain), using either E. coli or baculovirus expression systems. Our studies showed that the full-length NS3 proteins, either with or without the presence of the NS4A domain, from either strains were at least 10-fold more efficient than the corresponding helicase domains in unwinding partial duplex RNA substrates. These findings provide a rationale for the use of full-length NS3 in high throughput screening assays to identify potent small molecule inhibitors of this important target of HCV.  相似文献   

19.
Protein-RNA interaction plays a critical role in regulating RNA synthesis by the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp). RNAs of 7 nucleotides (nt) or longer had affinities 5-fold better than an RNA of 5 nt, suggesting a minimal length required for binding. To identify RNA contact sites on the HCV RdRp, a biotinylated 7-nt RNA capable of directing de novo initiation was used in a process that coupled reversible formaldehyde cross-linking, RNA affinity chromatography, and mass spectrometry. By this process, we identified 18 peptides cross-linked to the 7-nt RNA. When these identified peptides were overlaid on the three-dimensional structures of NS5B, most mapped to the fingers subdomain, connecting loops between fingers and thumb subdomains and in the putative RNA binding channel. Two of the identified peptides resided in the active site cavity of the RdRp. Recombinant HCV RdRp with single residue changes in likely RNA contact sites were generated and characterized for effects on HCV RdRp activity. Mutant proteins had significant effects on cross-linking to 7-nt RNA and reduced RNA synthesis in vitro by 2- to 20-fold compared with wild type protein. When the mutations were tested for the replication of HCV RNA in the context of the cells transfected with the HCV subgenomic replicon, all except one prevented colony formation, indicating a defect in HCV RNA replication. These biochemical and functional analyses identified a number of residues in the HCV RdRp that are important for HCV RNA synthesis.  相似文献   

20.
From compound library screening using an HCV NS5B RNA-dependent RNA polymerase enzymatic assay, we identified a pteridine hit compound with an IC(50) of 15 microM. Our SAR studies were focused on the different groups at the 6- and 7-positions, substitutions at the 4-position, and replacement of N(1) or N(3) with carbon in the pteridine ring. We found that NH or OH at 4-position is critical for the inhibitory activity. Furthermore, a hydrophobic substituent at the 4-position may help compounds permeate through the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号