首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The M species (medium sized) dsRNA (1.1–1.4 × 106 daltons) isolated from a toxin-producing yeast killer strain (K+R+) and three related, defective interfering (suppressive) S species dsRNAs of the yeast killer-associated cytoplasmic multicomponent viral-like particle system were analyzed by in vitro translation in a wheat germ cell-free protein synthesis system. Heat-denatured M species dsRNA programmed the synthesis of two major polypeptides, M-P1 (32,000 daltons) and M-P2 (30,000 daltons). M-P1 has been shown by the criteria of proteolytic peptide mapping and cross-antigenicity to contain the 12,000 dalton polypeptide corresponding to the in vivo produced killer toxin, thus establishing that it is the M species dsRNA which carries the toxin gene. An M species dsRNA obtained from a neutral strain (K?R+) also programmed the in vitro synthesis of a polypeptide identical in molecular weight to M-P1, thus indicating that the cytoplasmic determinant of the mutant neutral phenotype is either a simple point mutation in the dsRNA toxin gene or a mutation in a dsRNA gene which is required for functional toxin production. In vitro translation of each of the three different suppressive S dsRNAs resulted in the production of a polypeptide (S-P1) of approximately 8000 daltons instead of the 32,000 dalton M-P1 polypeptide programmed by M dsRNA. This result is consistent with the heteroduplex analysis of these dsRNAs by Fried and Fink (1978), which shows retention of M dsRNA ends, accompanied by large internal deletions in each of the S dsRNAs translated.  相似文献   

2.
The 1.6 and 1.8 kbp dsRNAs have been found in the rice blast fungus, Magnaporthe grisea strain MG01. These dsRNA molecules are located in cytoplasm of the fungal cells and maintained stably during vegetative growth. Three crosses between dsRNA free and dsRNA containing strains including a parental cross, sib-mating and back cross were made to follow the inheritance of dsRNAs during sexual reproduction. Approximately 10% of ascospore progenies (11 out of 105) contained dsRNAs from all three crosses. These data indicate that dsRNAs of M. grisea are inherited at a low frequency and not in a Mendelian fashion.  相似文献   

3.
Killer strains contain two double stranded RNAs, L and M. The M dsRNA appears to be necessary for production of a toxin and for resistance to that toxin. Mutant strains have been found that are defective in their ability to kill and in their resistance to toxin. These sensitive, non-killer strains have altered dsRNA composition. One class has no M dsRNA. Another class of sensitive, non-killers called suppressives has no M dsRNA but instead has smaller dsRNAs called S. In diploids resulting from a cross of a wild-type killer by a suppressive the transmission of the M dsRNA is suppressed by the S dsRNA. When a suppressive is crossed by a strain with no M dsRNA, the diploids and all four meiotic spores have the S dsRNA characteristic of the parental suppressive strain. Suppressive strains do not suppress each other. Intercrosses between two different suppressives yields diploids with both parental S dsRNAs. These two S dsRNAs are transmitted to all 4 meiotic progeny. Another class of mutants has been found which is defective for one of the traits but retains the other. One type, temperature-sensitive killers, has a normal dsRNA composition but is unable to kill at 30°. The other type, immunity-minus, has a complex dsRNA pattern. The immunity-minus strain is extremely unstable during mitotic growth and segregates several different types of non-killers. Analysis of the dsRNAs from wild type and the mutants by electron microscopy shows that the L, M, and S dsRNAs are linear. All strains regardless of killer phenotype appear to have the same size L dsRNA.  相似文献   

4.
The oleaginous fungus, Mucor circinelloides, is one of few fungi that produce high amounts of γ-linolenic acid (GLA); however, it usually only produces <25% lipid. Nevertheless, a new strain (WJ11) isolated in this laboratory can produce lipid up to 36% (w/w) cell dry weight (CDW). We have investigated the potential mechanism of high lipid accumulation in M. circinelloides WJ11 by comparative biochemical analysis with a low lipid-producing strain, M. circinelloides CBS 277.49, which accumulates less than 15% (w/w) lipid. M. circinelloides WJ11 produced more cell mass than that of strain CBS 277.49, although with slower glucose consumption. In the lipid accumulation phase, activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in strain WJ11 were greater than in CBS 277.49 by 46% and 17%, respectively, and therefore may provide more NADPH for fatty acid biosynthesis. The activities of NAD+:isocitrate dehydrogenase and NADP+:isocitrate dehydrogenase, however, were 43% and 54%, respectively, lower in WJ11 than in CBS 277.49 and may retard the tricarboxylic acid cycle and thereby provide more substrate for ATP:citrate lyase (ACL) to produce acetyl-CoA. Also, the activities of ACL and fatty acid synthase in the high lipid-producing strain, WJ11, were 25% and 56%, respectively, greater than in strain CBS 277.49. These enzymes may therefore cooperatively regulate the fatty acid biosynthesis in these two strains.  相似文献   

5.
Many fungi harbor double-stranded (ds) RNA molecules, which can have phenotypic effects such as hypovirulence, altered colony morphology, and pigmentation. In some species of Fusarium, dsRNA molecules are found in every strain examined. We examined 100 F. proliferatum strains collected primarily from maize and sorghum in the United States, but found only four that carried dsRNAs. Each strain harbored a distinct set of dsRNAs, which ranged in size from approximately 0.7–3.1 kb. A single dsRNA band was observed from one strain, but multiple bands were observed from the other three. The strains with multiple dsRNAs transmitted these dsRNAs as sets at a high frequency (≥ 97 %) to vegetatively produced microconidia, but the single dsRNA of the fourth strain was only rarely (≤ 3 %) transmitted in this manner. None of these dsRNAs could be transmitted through sexual crosses in which the dsRNA-containing strain served as the male parent. Transmission through the female parent could not be tested as the field strains and dsRNA-free derivatives of these strains were female sterile. The dsRNAs from the strains with multiple dsRNAs were present in and protected against ribonuclease A digestion in crude mitochondrial preparations. The high transmission rate to single-conidiospore cultures, the lack of transmission through the male parent of sexual crosses, and the protection against ribonuclease A digestion are all consistent with a mitochondrial localization of the dsRNAs from the strains carrying multiple dsRNAs. dsRNAs often function as viruses in fungi, and the three F. proliferatum strains reported here join strains of Ophiostoma novo-ulmi, Rhizoctonia solani, and Cryphonectria parasitica as the only fungi known to carry dsRNAs associated with the mitochondria. Contribution number 02-495-J from the Kansas Agricultural Experiment Station (Manhattan).  相似文献   

6.
Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation factor-1α and RNA polymerase II, subunits B1 and B2. The new taxa are: Deakozyma gen. nov., type species Deakozyma indianensis sp. nov. (type strain NRRL YB-1937, CBS 12903); Danielozyma gen. nov., type species Danielozyma ontarioensis comb. nov. (type strain NRRL YB-1246, CBS 8502); D. litseae comb. nov. (type strain NRRL YB-3246, CBS 8799); Middelhovenomyces gen. nov., type species Middelhovenomyces tepae comb. nov. (type strain NRRL Y-17670, CBS 5115) and M. petrohuensis comb. nov. (type strain NRRL Y-17663, CBS 8173).  相似文献   

7.
This is the first report of the genome sequence of Trichosporon asahii environmental strain CBS 8904, which was isolated from maize cobs. Comparison of the genome sequence with that of clinical strain CBS 2479 revealed that they have >99% chromosomal and mitochondrial sequence identity, yet CBS 8904 has 368 specific genes. Analysis of clusters of orthologous groups predicted that 3,307 genes belong to 23 functional categories and 703 genes were predicted to have a general function.  相似文献   

8.
Antibiotic-resistant (either to erythromycin or chloramphenicol) temperature-sensitive mutants were isolated with about the same frequency in 2 strains of the petite negative yeast K. lactis.The eryR and capR mutants isolated in the strain K. lactis CBS 2359 showed with high frequency both a lethal-conditioned (lc) or a petite temperature-sensitive (pts) phenotype, whereas amongst the many eryR and capR mutants isolated in the strain K. lactis CBS 2360 only lc phenotypes appeared. In the mutants isolated from K. lactis CBS 2360, one growth cycle in the presence of ethidium bromide irreversibly blocked the transmission of antibiotic resistance and temperature sensitivity (lc and pts), whereas at least 2 growth cycles were required to give the same results for the mutants isolated in K. lactis CBS 2359.The spontaneous reversion frequencies for the temperature sensitivity were about the same for the lc mutants isolated in the 2 strains, but the frequencies of co-reversion of the antibiotic resistance were higher in eryRlc and capRlc mutants isolated from K. lactis CBS 2360.The analysis of the effect of the exposure to erythromycin or to the temperature of 36°C on protein synthesis carried out by isolated mitochondria of 2 eryRlc mutants of K. lactis CBS 2360 and CBS 2359 showed that, in these mutants, mitochondrial protein synthesis became resistant to the drug and sensitive to temperature. The exposure at 36°C, before protein synthesis was inactived, determined in these mutants a condition of sensitivity to the antibiotic, suggesting that even though the 2 K. lactis strains differ in some aspects concerning the behaviour of their mitochondrial information they might depend, as to their petite-negative character, on the role that mitochondrial protein synthesis has in cell division.  相似文献   

9.
The Early Triassic is a critical interval for the study of recovery from the terminal Permian mass extinction, as there are small-scale extinction events, which may have contributed to the delayed recovery. The systematic measuring and sampling of a 12-m-thick section at the Mokrice locality in eastern Slovenia has resulted in the recovery of a conodont fauna from the Olenekian beds. Four conodont zones have been recognized. These zones are in ascending order as follows: the Hadrodontina aequabilis Zone, Platyvillosus corniger Zone, Platyvillosus regularis Zone, and Triassospathodus hungaricus Zone. These conodont zones confirm the proposed conodont biozonation sequence in western Slovenia and have correlation value especially for the western marginal Tethys. Multielement conodont apparatuses of Triassospathodus hungaricus and Platyvillosus regularis have been reconstructed based on conodont elements that were recently obtained from the Slovenian sections. Although the S2element was not found, the apparatus indicates that the conodont species “Spathognathodushungaricus should be assigned to the genus Triassospathodus.  相似文献   

10.
Saccharomyces bayanus is a yeast species described as one of the two parents of the hybrid brewing yeast S. pastorianus. Strains CBS380T and NBRC1948 have been retained successively as pure-line representatives of S. bayanus. In the present study, sequence analyses confirmed and upgraded our previous finding: S. bayanus type strain CBS380T harbours a mosaic genome. The genome of strain NBRC1948 was also revealed to be mosaic. Both genomes were characterized by amplification and sequencing of different markers, including genes involved in maltotriose utilization or genes detected by array-CGH mapping. Sequence comparisons with public Saccharomyces spp. nucleotide sequences revealed that the CBS380T and NBRC1948 genomes are composed of: a predominant non-cerevisiae genetic background belonging to S. uvarum, a second unidentified species provisionally named S. lagerae, and several introgressed S. cerevisiae fragments. The largest cerevisiae-introgressed DNA common to both genomes totals 70kb in length and is distributed in three contigs, cA, cB and cC. These vary in terms of length and presence of MAL31 or MTY1 (maltotriose-transporter gene). In NBRC1948, two additional cerevisiae-contigs, cD and cE, totaling 12kb in length, as well as several smaller cerevisiae fragments were identified. All of these contigs were partially detected in the genomes of S. pastorianus lager strains CBS1503 (S. monacensis) and CBS1513 (S. carlsbergensis) explaining the noticeable common ability of S. bayanus and S. pastorianus to metabolize maltotriose. NBRC1948 was shown to be inter-fertile with S. uvarum CBS7001. The cross involving these two strains produced F1 segregants resembling the strains CBS380T or NRRLY-1551. This demonstrates that these S. bayanus strains were the offspring of a cross between S. uvarum and a strain similar to NBRC1948. Phylogenies established with selected cerevisiae and non-cerevisiae genes allowed us to decipher the complex hybridisation events linking S. lagerae/S. uvarum/S. cerevisiae with their hybrid species, S. bayanus/pastorianus.  相似文献   

11.
The yeast Saccharomyces cerevisiae generally shows a low natural capability to utilize glycerol as the sole source of carbon, particularly when synthetic medium is used and complex supplements are omitted. Nevertheless, wild type isolates have been identified that show a moderate growth under these conditions. In the current study we made use of intraspecies diversity to identify targets suitable for reverse metabolic engineering of the non-growing laboratory strain CEN.PK113-1A. A genome-wide genetic mapping experiment using pooled-segregant whole-genome sequence analysis was conducted, and one major and several minor genetic loci were identified responsible for the superior glycerol growth phenotype of the previously selected S. cerevisiae strain CBS 6412-13A. Downscaling of the major locus by fine-mapping and reciprocal hemizygosity analysis allowed the parallel identification of two superior alleles (UBR2CBS 6412-13A and SSK1CBS 6412-13A). These alleles together with the previously identified GUT1CBS 6412-13A allele were used to replace the corresponding alleles in the strain CEN.PK113-1A. In this way, glycerol growth could be established reaching a maximum specific growth rate of 0.08 h−1. Further improvement to a maximum specific growth rate of 0.11 h−1 could be achieved by heterologous expression of the glycerol facilitator FPS1 from Cyberlindnera jadinii.  相似文献   

12.
13.
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.  相似文献   

14.
Torulopsis bacillaris (Kroemer and Krumbholz) Lodder (basionym Saccharomyces bacillaris Kroemer and Krumbholz) was frequently detected in oenological works on yeast ecology conducted in the mid-1950s in different wine regions of the world, before its unification with Torulopsis stellata (Kroemer and Krumbholz) Lodder. Most of the phenotypic characteristics pointed out for T. bacillaris are currently attributed to Candida zemplinina Sipiczki. In the present work isoenzyme profiles and rDNA restriction profiles of the neotype of S. bacillaris from two yeast culture collections (CBS 843 and PYCC 3044) and of the type strain of C. zemplinina (CBS 9494) were determined and similar profiles were detected. Moreover, the sequences of the D1/D2 region of the 26S rRNA gene of the three strains were 100 % identical. Different profiles were observed for the type strain of C. stellata (CBS 157) both for isoenzyme and rDNA restriction analysis and only 91 % similarity was found between the D1/D2 sequence of this strain and that of the neotype of S. bacillaris. In view of the newly obtained data and the fact that all above-mentioned species belong to the Starmerella clade, only distantly related to Candida tropicalis (the type species of the genus), S. bacillaris is hereby reinstated as Starmerella bacillaris comb. nov., with C. zemplinina as an obligate synonym.  相似文献   

15.
Double-stranded RNA viruses of about 35 nm in diameter were isolated from a mycocin-secreting strain of Cryptococcus aquaticus. A derivative of this strain, lacking small dsRNA, was non-mycocinogenic and sensitive to its own toxin. The killing pattern of this mycocin was restricted to some species of the Cystofilobasidiales clade. Despite the differences in genome size of dsRNA viruses in mycocinogenic strains of Cryptococcus aquaticus, Cystofilobasidium sp. CBS 6569, Cystofilobasidium bisporidii, Cystofilobasidium infirmominiatum, Trichosporon pullulans and Xanthophyllomyces dendrorhous and killing patterns of their mycocins, the viral genomes showed homology in hybridisation experiments.  相似文献   

16.
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) CBS7435 is the parental strain of commonly used P. pastoris recombinant protein production hosts making it well suited for improving the understanding of associated genomic features. Here, we present a 9.35 Mbp high-quality genome sequence of P. pastoris CBS7435 established by a combination of 454 and Illumina sequencing. An automatic annotation of the genome sequence yielded 5007 protein-coding genes, 124 tRNAs and 29 rRNAs. Moreover, we report the complete DNA sequence of the first mitochondrial genome of a methylotrophic yeast. Fifteen genes encoding proteins, 2 rRNA and 25 tRNA loci were identified on the 35.7 kbp circular, mitochondrial DNA. Furthermore, the architecture of the putative alpha mating factor protein of P. pastoris CBS7435 turned out to be more complex than the corresponding protein of Saccharomyces cerevisiae.  相似文献   

17.
An in vitro assay system for the toxin of Bacillus sphaericus strains 1593 and 2362 has been developed utilizing cultured Culex quinquefasciatus cells. The cytotoxic activity of extracts of B. sphaericus strain 1593 did not necessarily correlate with insecticidal activity. Cytotoxicity and larvicidal activity were neutralized by immune rabbit serum prepared against crude toxin extracts as well as by serum prepared against purified toxin from strain 2362. This purified toxin was also found to be cytotoxic. Activation with mosquito larval gut homogenates enhanced cytotoxicity of both 1593 extracts and purified toxin from 2362. The activity of cytotoxic preparations against three mosquito cell lines paralleled the activity of B. sphaericus spores against larvae of these mosquito species. The results suggest the presence of a protoxin and one or more cytotoxic proteins derived from it.  相似文献   

18.
The genome of a high lipid-producing fungus Mucor circinelloides WJ11 (36% w/w lipid, cell dry weight, CDW) was sequenced and compared with that of the low lipid-producing strain, CBS 277.49 (15% w/w lipid, CDW), which had been sequenced by Joint Genome Institute. The WJ11 genome assembly size was 35.4 Mb with a G+C content of 39.7%. The general features of WJ11 and CBS 277.49 indicated that they have close similarity at the level of gene order and gene identity. Whole genome alignments with MAUVE revealed the presence of numerous blocks of homologous regions and MUMmer analysis showed that the genomes of these two strains were mostly co-linear. The central carbon and lipid metabolism pathways of these two strains were reconstructed and the numbers of genes encoding the enzymes related to lipid accumulation were compared. Many unique genes coding for proteins involved in cell growth, carbohydrate metabolism and lipid metabolism were identified for each strain. In conclusion, our study on the genome sequence of WJ11 and the comparative genomic analysis between WJ11 and CBS 277.49 elucidated the general features of the genome and the potential mechanism of high lipid accumulation in strain WJ11 at the genomic level. The different numbers of genes and unique genes involved in lipid accumulation may play a role in the high oleaginicity of strain WJ11.  相似文献   

19.
Ascomycetous yeast strain SM-22 was isolated from the sea-surface microlayer near the Keelung City off the northern coast of Taiwan. This strain showed a cell surface hydrophobicity higher than 90 %, moderate UV A/B resistance, and it degraded 68 % of the total petroleum hydrocarbon content of an artificial seawater medium containing 1 % (v v?1) diesel oil within 15 days at 25 °C. The closest phylogenetic relative of this strain is Candida oslonensis CBS 10146T, but it differs from strain SM-22 by a 3.7 % divergence (including 18 nucleotide substitutions and 2 gaps) in the D1/D2 domain sequence of the large subunit rRNA gene. This difference clearly suggests that the strain SM-22 represents a distinct species. Strain SM-22 does not produce ascospores on common sporulation media and it can therefore be considered an anamorph of the genus Yarrowia. Thus, the name Yarrowia keelungensis sp. nov. (type strain SM-22T = BCRC 23110T = JCM 14894T = CBS 11062T) is proposed as a novel species of genus Yarrowia.  相似文献   

20.

Background

Although useful for probing bacterial pathogenesis and physiology, current random mutagenesis systems suffer limitations for studying the toxin-producing bacterium Clostridium perfringens.

Methodology/Principal Findings

An EZ-Tn5-based random mutagenesis approach was developed for use in C. perfringens. This mutagenesis system identified a new regulatory locus controlling toxin production by strain 13, a C. perfringens type A strain. The novel locus, encoding proteins with homology to the AgrB and AgrD components of the Agr quorum sensing system of Staphylococcus aureus and two hypothetical proteins, was found to regulate early production of both alpha toxin and perfringolysin O (PFO) by strain 13. PFO production by the strain 13 ΔagrB mutant could be restored by genetic complementation or by physical complementation, i.e. by co-culture of the strain 13 ΔagrB mutant with a pfoA mutant of either strain 13 or C. perfringens type C CN3685. A similar AgrB- and AgrD-encoding locus is identifiable in all sequenced C. perfringens strains, including type B, C, D, and E isolates, suggesting this regulatory locus contributes to toxin regulation by most C. perfringens strains. In strain 13, the agrB and agrD genes were found to be co-transcribed in an operon with two upstream genes encoding hypothetical proteins.

Conclusions/Significance

The new Tn5-based random mutagenesis system developed in this study is more efficient and random than previously reported C. perfringens random mutagenesis approaches. It allowed identification of a novel C. perfringens toxin regulatory locus with homology to the Agr system of S. aureus and which functions as expected of an Agr-like quorum sensing system. Since previous studies have shown that alpha toxin and perfringolysin O are responsible for strain 13-induced clostridial myonecrosis in the mouse model, the new agr regulatory locus may have importance for strain 13 virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号