首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Diurnal measurements of chlorophyll a fluorescence from cacti (Nopalea cochenillifera, Opuntia ficus-indica, and Opuntia wentiana) growing in northern Venezuela were used to determine photochemical fluorescence quenching related to the reduction state of the primary electron acceptor of PS II as well as non-photochemical fluorescence quenching which reflects the fraction of energy going primarily into radiationless deexcitation. The cladodes used in this study were oriented such that one surface received direct sunlight in the morning and the other one during the afternoon. Both surfaces exhibited large increases in radiationless energy dissipation from the photochemical system accompanied by decreases in PS II photochemical efficiency during direct exposure to natural sunlight. During exposure to sunlight in the morning, dissipation of absorbed light energy through photosynthesis and radiationless energy dissipation was sufficient to maintain Q, the primary electron acceptor for PS II, in a low reduction state. During exposure to sunlight in the afternoon, however, the reduction state of Q rose to levels greater than 50%, presumably due to a decrease in photosynthetic electron transport as the decarboxylation of the nocturnally accumulated malic acid was completed. Exposure to direct sunlight in the afternoon also led to more sustained increases in radiationless energy dissipation. Furthermore, the increases in radiationless energy dissipation during exposure of a water-stressed cladode of O. wentiana to direct sunlight were much greater than those from other well-watered cacti, presumably due to sustained stomatal closure and decreased rates of photosynthetic electron transport. These results indicate that the radiationless dissipation of absorbed light is an important process in these CAM plants under natural conditions, and may reflect a protective mechanism against the potentially damaging effects of the accumulation of excessive energy, particularly under conditions where CO2 availability is restricted.Abbreviations CAM crassulacean acid metabolism - F o instantaneous fluorescence emission - F M maximum fluorescence emission - F v variable fluorescence emission - K D rate constant for radiationless energy dissipation in the antenna chlorophyll - PFD photon flux density - PS I photosystem I - PS II photosystem II - Q primary electron acceptor of photosystem II - q NP non-photochemical fluorescence quenching - q P photochemical fluorescence quenching - T C cladode temperature  相似文献   

2.
Inhibition of photosynthesis was followed during autumn and early winter in current-year sun and shade needles of unfertilized and fertilized Norway spruce [Picea abies (L.) Karst.] by simultaneous measurements of photosynthetic O2 evolution and chlorophyll a fluorescence at 20 °C. The CO2-saturated rate of O2 evolution was generally higher in sun needles of fertilized trees than in those of unfertilized trees over a wide range of incident photon flux densities (PFDs). Furthermore, the maximum photo-chemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (FV/FM) was generally higher for sun needles of fertilized trees. The depression of fv/fm during frost periods was more pronounced in sun needles than in shade needles, indicating that winter inhibition in Norway spruce is strongly light-dependent. However, the inhibition of the rate of O2 evolution at high PFDs in needles of fertilized trees during early winter was partly independent of the light regime experienced by those needles in the field, which appeared to result in a pronounced decrease in the proportion of oxidized PS II reaction centres in shade needles. A nearly identical linear relationship between the quantum yield of PS II electron transport determined by chlorophyll fluorescence and the quantum yield of O2 evolution (gross rate of O2 evolution/PFD) was obtained for the investigated types of needles during autumn and early winter. Except for shade needles of fertilized trees, this appeared to be largely achieved by adjustments in thermal energy dissipation within PS II.  相似文献   

3.
In the flagged crown, which is asymmetric growth formed by severe stresses during winter in alpine regions, needles of evergreen conifers often became brown and died in early spring, but did not in a cushion-shaped crown. Needle browning and death is thought to occur by increasing transpiration due to a thinner cuticle or mechanical damage to the cuticle by wind-born snow and ice particles. To confirm whether the needle browning and death in the flagged crown of Abies mariesii Mast., in the alpine region of Japan conform with this concept, we assessed mechanical damage of the needle cuticle in a timberline ecotone and evaluated the effect of cuticle thickness on cuticular resistance. Mechanical damage on needle cuticles of A. mariesii was not observed. In the cushion-shaped crown, epicuticular wax covered the cuticle and plugged stomatal antechambers. In the flagged crown, epicuticular wax was mostly absent. Cuticular resistance in the flagged crown was lower than that in the cushion-shaped crown. However, the cuticle in the flagged crown was thicker than that in the cushion-shaped crown. The needle browning and death in the flagged crown of A. mariesii occurred even though needle cuticles were not mechanically damaged. The thicker cuticle of the flagged crown may play a role in other stresses. To estimate desiccation stress in relation to the cuticle, we need to elucidate not only cuticular resistance and cuticle thickness, but also cuticle quality and structure.  相似文献   

4.

Background and Aims

Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline.

Methods

One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350–2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only.

Key Results

The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage.

Conclusions

This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage due to strong wind and snow rather than by growth limitation due to low temperature. Therefore, the timberline would not move upward even under global warming if these growth and mortality characteristics do not change for a long time.  相似文献   

5.
Chloroplasts were isolated from primary needles of 1-year-old seedlings and from secondary needles of a 20-year-old pine tree in a natural stand. In autumn the electron transport capacities of PSII, PSI and PS (II + I) decreased and the electron transport between PSII and PSI became inhibited in October in the 20-year-old tree. This inhibition lasted until May the following year. The partial reactions of PSI and PSII still showed low but fairly constant rates during the whole winter seedlings. Seasonal changes in the electron transport properties of 1-year-old showed the same general trends as observed in the 20-year-old tree, but the changes were less pronounced. However, in snow-covered seedlings the PSI-mediated electron transport and the electron transport from H2O to NADP increased during the late winter when the seedlings were still covered by snow. The total chlorophyll content of the needles decreased in autumn and winter. Low temperature fluorescence ratios of F692/F680 and F726/F680 indicated more severe destruction of the chlorophyll a antennae closely associated with the two photosystems than of the light harvesting chlorophyll a/b complex. In this case, too, the changes were more pronounced in the 20-year-old tree than in the 1-year-old seedlings. The chlorophyll/P700 ratios indicated a more marked reduction in the reaction centre molecules during autumn than in the antennae chlorophyll molecules. The changes in electron transport and low temperature fluorescence properties which occurred during autumn and winter were mainly reversed during spring.  相似文献   

6.
Questions: Are there interspecific differences in mortality and recruitment rates across life stages between two shade‐tolerant dominant trees in a sub‐alpine old‐growth forest? Do such differences in demography contribute to the coexistence and co‐dominance of the two species? Location: Sub‐alpine, old‐growth forest on Mt. Ontake, central Honshu, Japan. Methods: From 1980 to 2005, we recorded DBH and status (alive or dead) of all Abies mariesii and A. veitchii individuals (DBH ≥ 5 cm) in a 0.44‐ha plot. Based on this 25 year census, we quantified mortality and recruitment rates of the two species in three life stages (small tree, 5 cm ≤ DBH < 10 cm; subcanopy tree, 10 cm ≤ DBH < 20 cm; canopy tree, DBH ≥ 20 cm). Results: Significant interspecific differences in mortality and recruitment rates were observed in both the small tree and sub‐canopy tree stages. In this forest, saplings (< 5 cm DBH) are mostly buried by snow‐pack during winter. As a consequence, saplings of A. mariesii, which is snow and shade tolerant, show higher rates of recruitment into the small tree stage than do those of A. veitchii. Above the snow‐pack, trees must tolerate dry, cold temperatures. A. veitchii, which can more readily endure such climate conditions, showed lower mortality rate at the subcanopy stage and a higher recruitment rate into the canopy tree stage. This differential mortality and recruitment among life‐stages determines relative dominance of the two species in the canopy. Conclusion: Differential growth conditions along a vertical gradient in this old forest determine survival of the two species prior to reaching the canopy, and consequently allow co‐dominance at the canopy stage.  相似文献   

7.
Lebkuecher  J.G.  Altmon  L.E.  Harris  G.K.  Wallace  K.L.  Wilding  A.R. 《Photosynthetica》2002,40(2):301-304
Etiolated sunflower cotyledons developed in complete darkness and lacking photosystem (PS) 2 were exposed to continuous 200 µmol(photon) m–2 s–1 white light for 1, 3, 6, 12, and 18 h prior to evaluations of excitation-energy dissipation using modulated chlorophyll a fluorescence. Photochemical potential of PS2, measured as the dark-adapted quantum efficiency of PS2 (FV(M)/FM), and thermal dissipation from the antenna pigment-protein complex, measured as the Stern-Volmer non-photochemical quenching coefficient (NPQ), increased to 12 h of irradiation. Following 12 h of irradiation, thermal dissipation from the antennae pigment-protein complex decreased while the efficiency of excitation capture by PS2 centers (FV/FM) and light-adapted quantum efficiency of PS2 (PS2) continued to increase to 18 h of irradiation. The fraction of the oxidized state of QA, measured by the photochemical quenching coefficient (qP), remained near optimal and was not changed significantly by irradiation time. Hence during the development of maximum photochemical potential of PS2 in sunflower etioplasts, which initially lacked PS2, enhanced thermal dissipation helps limit excitation energy reaching PS2 centers. Changes of the magnitude of thermal dissipation help maintain an optimum fraction of the oxidized state of QA during the development of PS2 photochemistry.  相似文献   

8.
1 Seasonal changes in the distribution of green spruce aphid Elatobium abietinum (Walker) within the canopy of 20–25‐year‐old Sitka spruce are described based on data from two low‐altitude sites (310–420 m above sea‐level), two mid‐altitude sites (500–550 m a.s.l) and one high‐altitude site (610 m a.s.l). 2 Aphids were counted throughout the canopy on shoots representative of all needle age‐classes present at each whorl of branches. Counts were made during the middle week of each month from September to July for 4 years (1999–2003), and mean E. abietinum densities at each canopy position were calculated separately for each month and for the low‐, mid‐ and high‐altitude sites. 3 During September to November, the highest densities of E. abietinum occurred on 3–4‐year‐old needles on branches low in the canopy. Over the winter and spring, the centre of the aphid’s distribution shifted outward and upward, so that by June of the next year the highest aphid densities occurred on current and 1‐year‐old needles on branches near the top of the tree. 4 The aphid distribution was re‐set each year during July, at the time when the nutrient quality of the host was in decline and E. abietinum populations were decreasing. Aphid densities decreased less on 3–4‐year‐old needles than on current and 1‐year‐old needles, suggesting that older needles were a superior food resource at this time of year and in the autumn. However, other factors, such as higher temperatures in the upper canopy during the summer or differential mortality caused by natural enemies, could also have contributed to the change in distribution. 5 The outward and upward shift in the aphid distribution over the winter period provided no evidence that aphids at positions lower and deeper in the canopy were better insulated from freezing temperatures and had higher over‐winter survival rates. Mean air temperatures at the top and bottom of the canopy during the winter were also found to differ by only 0.1–0.2 °C. 6 The percentage of the total aphids per tree that occurred on current or 1‐year‐old needles varied widely between seasons and between sites. Consequently, sampling programmes designed to estimate total population numbers of E. abietinum have little option but to sample needles throughout the canopy, and at regular intervals during the period when the aphid is abundant.  相似文献   

9.
Abies firma is a dominant coniferous tree species endemic to Japan. We isolated eight microsatellite loci from needles of this tree species and tested their polymorphism among 26 A. firma individuals. Six of them showed polymorphism, with two to 16 alleles per locus. Their expected heterozygosities ranged from 0.075 to 0.922. Moreover, interspecific amplification among Abies sachalinensis, Abies mariesii and Abies veitchii was successful in majority of the isolated loci, suggesting that these loci may be useful for characterization of other fir species.  相似文献   

10.
The flow of excitation energy from the antennae to photosynthetic reaction centre complexes at 77 K was studied in leaves of two evergreen species, namely, snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) and a hemiparasitic mistletoe (Amyema miquelii, Lehm. ex Miq.). The leaves that were naturally acclimated to winter conditions of freezing temperatures and high irradiance displayed the recently discovered cold‐hard‐band or CHB feature of the chlorophyll a fluorescence spectra (Gilmore & Ball, Proc. Nat. Acad. Sci. USA 97:11098–11101, 2000). A streak‐camera‐spectrograph was used and the double convolution integral method for global analysis was applied to simultaneously acquire and simulate, respectively, the time‐ and wavelength‐dependence of all major chlorophyll a components (Gilmore et al. Phil. Trans. Roy. Soc. B‐London 355:1371–1384, 2000). The CHB coincided with changed amplitudes and decreased excited state lifetimes for the main F685 nm and F695 nm emission bands from the photosystem II (PSII) core‐inner‐antenna. The CHB dissipates energy as heat separate from PSII while also reducing the PSII quantum yield by competing for both photon absorption and antenna excitation. The CHB did not correlate with changes in the decay kinetics of the PSI antenna F740 nm band. The spectral‐kinetic features of the altered energy flow were similar in the unrelated evergreen species. These results are consistent with a functional association between the CHB, PSII energy dissipation and protective storage of chlorophyll in overwintering evergreens.  相似文献   

11.
The upper distribution limit of tall tree species Abies mariesii is the timberline in central Japan, and dwarf pine Pinus pumila dominates above the timberline to near the summit. My previous studies suggested that the main cause of the timberline formation is the increase in mortality due to strong wind in winter rather than low growth due to low summer temperature. This study evaluated how wind velocity affects timberline formation and if the altitude of timberline moves upward due to high thermal conditions, by using a lattice model. Increase in wind velocity throughout the altitude lowered the altitudes of upper distribution limits of the two species. On the contrary, prolonged growth period due to high thermal conditions increased the upper distribution limit of P. pumila, and the upper distribution limit of A. mariesii was hardly affected by the change of growth period. However, the upward shift of the upper distribution limit of P. pumila due to the prolonged growth period in the model would not be realistic because P. pumila had already distributed up to near the summit. This study concludes that A. mariesii is a superior competitor to P. pumila at low altitudes with low wind velocity, but dwarf pine P. pumila can dominate at higher altitudes because A. mariesii suffers severe mechanical damage due to strong wind in winter, and that the altitude of the timberline does not move upward even under high thermal conditions due to global warming.  相似文献   

12.
Abstract. The CAM vine Hoya australis and three C3 vines, Smilax australis, Ipomoea pes-caprae and Kennedta rubicunda, were studied at a site on the coast of northeastern New South Wales, Australia. The level of CAM activity (nocturnal acid accumulation) was comparable in H. australis growing in full sunlight and in deep shade. Acclimation to shade by H. australis was indicated by thinner leaves, increased chlorophyll content, decreased chlorophyll a/b ratios, lower dark respiration rates, and lower light compensation points. When growing in full sunlight H. australis exhibited reductions in photochemical efficiency, as indicated by reduced quantum yields and Fv/Fm fluorescence from PS II as well as low rates of photosynthesis at high light. Sun leaves of H. australis experienced a massive quenching of fluorescence from PS II during normal exposure to midday irradiance which was rapidly reversible under low irradiance conditions in the late afternoon. This quenching indicated a reduction in photochemical efficiency, part of which could be accounted for by an increase in non-radiative energy dissipation, while part of it was due to one or more processes not yet identified. Changes in PS II fluorescence from shade H. australis exposed to full sunlight suggest a decrease in the rate constant for photochemistry indicative of damage to the reaction centre, as well as an increase in non-radiative energy dissipation. The C3 vine S. australis was also shade tolerant, but exhibited little evidence of photoinhibition when growing in full sunlight. Ipomoea pescaprae and K. rubicunda, both of which were apparently shade intolerant (being found only in full sunlight), possessed high quantum yields and much higher photosynthetic capacities than either H. australis or S. australis. From this study, and several others, it appears that plants possessing CAM experience photoinhibition to a greater degree than do C3 species in full sunlight under natural conditions, which is probably exacerbated by some degree of CAM-idling.  相似文献   

13.
Shirke  P.A.  Pathre  U.V. 《Photosynthetica》2003,41(1):83-89
The plants of Prosopis juliflora growing in northern India are exposed to large variations of temperature, vapour pressure deficits (VPD), and photosynthetic photon flux density (PPFD) throughout the year. Under these conditions P. juliflora had two short periods of leaf production, one after the winter season and second after summer, which resulted in two distinct even aged cohorts of leaves. In winter with cold nights (2–8 °C) and moderate temperatures during the day, the plants showed high rates of photosynthesis. In summer the midday temperatures often reached <45 °C and plants showed severe inhibition of photosynthesis. The leaves of second cohort appeared in July and showed typical midday depression of photosynthesis. An analysis of diurnal partitioning of the absorbed excitation energy into photochemistry showed that a smaller fraction of the energy was utilised for photochemistry and a greater fraction was dissipated thermally, further the photon utilisation for photochemistry and thermal dissipation is largely affected by the interaction of irradiance and temperature. The plants showed high photochemical efficiency of photosystem 2 (PS2) at predawn and very little photoinhibition in all seasons except in summer. The photoinhibition in summer was pronounced with very poor recovery during night. Since P. juliflora exhibited distinct pattern of senescence and production of new leaves after winter and summer stress period, it appeared that the ontogenic characteristic together with its ability for safe dissipation of excess radiant energy in P. juliflora contributes to its growth and survival.  相似文献   

14.
Trees at timberline in the high Alps are exposed to a variety of climatic conditions. Most climatic stresses occur during winter and spring, when frost, occasionally low snow cover, and high irradiation interact. In this study, we follow reactions of photosynthesis from high winter to spring in two dominating tree species of the alpine timberline, which may indicate the status of stress response to a changing environment. The results indicate a level of physiological stability in trees, which are important for stabilising natural high mountain ecosystems. Trees of Pinus cembra and of Pinus mugo were selected at altitudes between 1850 m a.s.l. and 1950 m a.s.l. near innsbruck, Austria. At six sampling times from January to May, fast chlorophyll fluorescence was measured in the field and twigs were collected for further investigation in the laboratory. The following measurements were taken: photosynthetic oxygen formation, needle chlorophyll and carotenoid determination, and kinetic studies of the xanthophyll cycle. In general, both tree species showed similar results in most parameters studied. P. mugo seems to have some advantages if winter precipitation is high, when, because of its growth habitus, most needles will be snow covered. Primary photochemistry (trapping per reaction centre) in PS II does not change with sampling dates despite the fact that temperature and light are changing. However, first events in electron transport and whole needle photosynthesis are strongly affected by light and temperature conditions during the days before sampling. The kinetics of the xanthophyll cycle indicate not only light, but also strong temperature effects. P. mugo photosynthesis seems to have a higher stability under changing weather. Both tree species are well prepared to start with photosynthesis in winter, if favourable conditions, like foehn events, occur.  相似文献   

15.
Uneven winter snow influence on tree growth across temperate China   总被引:1,自引:0,他引:1  
Winter snow is an important driver of tree growth in regions where growing‐season precipitation is limited. However, observational evidence of this influence at larger spatial scales and across diverse bioclimatic regions is lacking. Here, we investigated the interannual effects of winter (here defined as previous October to current February) snow depth on tree growth across temperate China over the period of 1961–2015, using a regional network of tree ring records, in situ daily snow depth observations, and gridded climate data. We report uneven effects of winter snow depth on subsequent growing‐season tree growth across temperate China. There shows little effect on tree growth in drier regions that we attribute mainly to limited snow accumulation during winter. By contrast, winter snow exerts important positive influence on tree growth in stands with high winter snow accumulation (e.g., in parts of cold arid regions). The magnitude of this effect depends on the proportion of winter snow to pre‐growing‐season (previous October to current April) precipitation. We further observed that tree growth in drier regions tends to be increasingly limited by warmer growing‐season temperature and early growing‐season water availability. No compensatory effect of winter snow on the intensifying drought limitation of tree growth was observed across temperate China. Our findings point toward an increase in drought vulnerability of temperate forests in a warming climate.  相似文献   

16.
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transfer rate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.  相似文献   

17.
Kalina  J.  Urban  O.  Čajánek  M.  Kurasová  I.  Špunda  V.  Marek  M.V. 《Photosynthetica》2001,39(3):369-376
The acclimation depression of capacity of photon utilisation in photochemical reactions of photosystem 2 (PS2) can develop already after three months of cultivation of the Norway spruces (Picea abies [L.] Karst.) under elevated concentrations of CO2 (i.e., ambient, AC, + 350 µmol(CO2) mol–1 = EC) in glass domes with adjustable windows. To examine the role that duration of EC plays in acclimation response, we determined pigment contents, rate of photosynthesis, and parameters of chlorophyll a fluorescence for sun and shade needles after three seasons of EC exposure. We found responses of shaded and exposed needles to EC. Whereas the shaded needles still profited from the EC and revealed stimulated electron transport, for the exposed needles the stimulation of both electron transport activity and irradiance saturated rate of CO2 assimilation (P Nmax) under EC already disappeared. No signs of the PS2 impairment were observed as judged from high values of potential quantum yield of PS2 photochemistry (FV/FM) and uniform kinetics of QA reoxidation for all variants. Therefore, the long-term acclimation of the sun-exposed needles to EC is not necessarily accompanied with the damage to the PS2 reaction centres. The eco-physiological significance of the reported differentiation between the responses of shaded and sun exposed needles to prolonged EC may be in changed contribution of the upper and lower crown layers to the production activity of the tree. Whereas for the AC spruces, P Nmax of shaded needles was only less than 25 % compared to exposed ones, for the EC spruces the P Nmax of shaded needles reached nearly 40 % of that estimated for the exposed ones. Thus, the lower shaded part of the crown may become an effective consumer of CO2.  相似文献   

18.
We examined differences between summer and winter in xanthophyll cycle-dependent energy dissipation and leaf antioxidant systems in needles of the overwintering evergreen Taxus x media cv. Tauntonii (Taunton yew) growing in both sun and shade environments in Saint Paul, Minnesota. During the winter, both sun and shade plants exhibited increases in the capacity for, and utilization of, xanthophyll cycle-dependent thermal energy dissipation. Winter needles showed decreases (sun needles) or no change (shade needles) in superoxide dismutase activity (EC 1.15.1.1), no change in ascorbate peroxidase activity (EC 1.11.1.11) and no change (sun needles) or increases (shade needles) in reduced ascorbate levels. Both sun and shade needles showed large increases in glutathione reductase activity (EC 1.6.4.2) and total glutathione levels during the winter, in addition to increases in levels of α-tocopherol. These results suggest an important photoprotective role during the winter for xanthophyll cycle-dependent energy dissipation and for the antioxidants glutathione and α-tocopherol. They suggest a less important photoprotective function of the enzyme-based water–water cycle in winter acclimation in the seasonally very cold environment of Minnesota.  相似文献   

19.
Many studies have reported shifts in the altitudinal ranges of plant species in response to recent global warming. However, most studies of tree species have been conducted on a small scale and have focused on tree line ecotones by examining tree rings and age structure on account of the long life spans of the trees. To examine the impact of climate change on forest dynamics at a regional scale, we investigated differences in the population density and canopy height of a Japanese subalpine coniferous species, Abies mariesii, between 1967 and 2003 by analysis of high‐resolution aerial photographs of the Hakkoda Mountains, Honshu, Japan. In 712 plots within the photographs we analyzed which environmental variables (including elevation, aspect, wetness, and distance from moorlands) account for these changes. The population density of A. mariesii decreased below 1000 m a.s.l. and increased above 1300 m a.s.l. It also increased around moorlands, which may provide refugia at low elevations. The rate of increase in canopy height was lowest on the southeastern slopes and on the periphery of the moorlands. The distinct changes in the population density of A. mariesii at its distribution limits probably reflect the responses of the population to climatic changes during three decades. Areas surrounding the moorlands may offer refugia in spite of the poor growing conditions there.  相似文献   

20.
Winter is becoming warmer and shorter across the northern hemisphere, and reductions in snow depth can decrease tree seedling survival by exposing seedlings to harmful microclimates. Similarly, herbivory by small mammals can also limit the survival and distribution of woody plants, but it is unclear whether winter climate change will alter small‐mammal herbivory. Although small‐scale experiments show that snow removal can either increase or decrease both soil temperatures and herbivory, we currently lack snow‐removal experiments replicated across large spatial scales that are needed to understand the effect of reduced snow. To examine how winter herbivory and snow conditions influence seedling dynamics, we transplanted Acer saccharum and Tsuga canadensis seedlings across a 180 km latitudinal gradient in northern Wisconsin, where snow depth varied seven‐fold among sites. Seedlings were transplanted into one of two herbivory treatments (small‐mammal exclosure, small‐mammal access) and one of two late‐winter snow removal treatments (snow removed, snow unmanipulated). Snow removal increased soil freeze‐thaw frequency and cumulative growing degree‐days (GDD), but the magnitude of these effects depended on forest canopy composition. Acer saccharum survival decreased where snow was removed, but only at sites without conifers. Excluding small mammals increased A. saccharum survival at sites where the small‐mammal herbivore Myodes gapperi was present. Excluding small mammals also increased T. canadensis survival in plots with < 5 cm snow. Because variation in canopy composition and M. gapperi presence were important predictors of seedling survival across the snow‐depth gradient, these results reveal complexity in the ability to accurately predict patterns of winter seedling survival over large spatial scales. Global change scenarios that project future patterns of seedling recruitment may benefit from explicitly considering interactions between snow conditions and small‐mammal winter herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号