首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate overproduction by Corynebacterium glutamicum is triggered by treatment with penicillin or Tween 40 and is accompanied by a decrease in 2-oxoglutarate dehydrogenase complex (ODHC) activity. We have reported that de novo synthesis of OdhI, which inhibits ODHC activity by interacting specifically with the E1o subunit of ODHC (OdhA), is induced by penicillin, and that odhI overexpression induces glutamate overproduction in the absence of any triggers for glutamate overproduction. In this study, to determine the function of OdhI in glutamate overproduction by C. glutamicum, changes in OdhI levels and phosphorylation status during penicillin- and Tween 40-induced glutamate overproduction were examined by western blot. The synthesis of both unphosphorylated and phosphorylated OdhI was increased by addition of Tween 40 or penicillin and the levels of unphosphorylated OdhI, which can inhibit ODHC activity, was significantly higher than those of phosphorylated OdhI, which is unable to inhibit ODHC activity. Meanwhile, the OdhA levels were maintained throughout the culture. These results indicate that OdhI synthesis is induced by additions of penicillin and Tween 40 and most synthesized OdhI is unphosphorylated, resulting in the decrease in ODHC activity and glutamate overproduction. Similarly, in the odhI-overexpressing strain, both unphosphorylated and phosphorylated OdhI were synthesized, while the levels of OdhA were nearly constant throughout culture. Our results suggest that high level of unphosphorylated OdhI regulates glutamate overproduction by C. glutamicum.  相似文献   

2.
Recent studies have suggested that a decrease in the specific activity of the 2-oxoglutarate dehydrogenase complex (ODHC) is important for glutamate overproduction by Corynebacterium glutamicum. To further investigate the role of the odhA gene and its product in this process, we constructed the recombinant strains of C. glutamicum in which the expression of the odhA and its product could be controlled by odhA overexpression and odhA antisense RNA expression. We examined changes in glutamate production and ODHC specific activity of the constructed strains during glutamate production triggered by Tween 40 addition. The ODHC specific activity increased with odhA overexpression, resulting in dramatically reduced glutamate production despite Tween 40 addition, indicating that a decrease in the specific activity of ODHC is required for glutamate production induced by Tween 40 addition. However, odhA antisense RNA expression alone did not result in glutamate overproduction in spite of the decrease in ODHC specific activity. Rather, it enhanced glutamate production triggered by Tween 40 addition due to the additional decrease in ODHC specific activity, suggesting that odhA antisense RNA expression is effective in enhancing Tween-40-triggered glutamate overproduction. Our results suggest that a change in ODHC specific activity is critical but is not the only factor responsible for glutamate overproduction by C. glutamicum.  相似文献   

3.
Escherichia coli is engineered for γ‐aminobutyrate (GABA) production in glucose minimal medium. For this, overexpression of mutant glutamate decarboxylase (GadB) and mutant glutamate/GABA antiporter (GadC), as well as deletion of GABA transaminase (GabT), are accomplished. In addition, the carbon flux to the tricarboxylic acid cycle is engineered by the overexpression of gltA, ppc, or both. The overexpression of citrate synthase (CS), encoded by gltA, increases GABA productivity, as expected. Meanwhile, the overexpression of phosphoenolpyruvate carboxylase (PPC) causes a decrease in the rate of glucose uptake, resulting in a decrease in GABA production. The phenotypes of the strains are characterized by 13C metabolic flux analysis (13C MFA). The results reveal that CS overexpression increases glycolysis and anaplerotic reaction rates, as well as the citrate synthesis rate, while PPC overexpression causes little changes in metabolic fluxes, but reduces glucose uptake rate. The engineered strain produces 1.2 g L?1 of GABA from glucose. Thus, by using 13C MFA, important information is obtained for designing metabolically engineered strains for efficient GABA production.  相似文献   

4.
13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells   总被引:6,自引:0,他引:6  
Anaplerotic flux into the Kreb's cycle is crucial for glucose-stimulated insulin secretion from pancreatic beta-cells. However, the regulation of flux through various anaplerotic pathways in response to combinations of physiologically relevant substrates and its impact on glucose-stimulated insulin secretion is unclear. Because different pathways of anaplerosis generate distinct products, they may differentially modulate the insulin secretory response. To examine this question, we applied 13C-isotopomer analysis to quantify flux through three anaplerotic pathways: 1) pyruvate carboxylase of pyruvate derived from glycolytic sources; 2) pyruvate carboxylase of pyruvate derived from nonglycolytic sources; and 3) glutamate dehydrogenase (GDH). At substimulatory glucose, anaplerotic flux rate in the clonal INS-1 832/13 cells was approximately 40% of Kreb's cycle flux, with similar contributions from each pathway. Increasing glucose to 15 mm stimulated insulin secretion approximately 4-fold, and was associated with a approximately 4-fold increase in anaplerotic flux that could mostly be attributed to an increase in PC flux. In contrast, the addition of glutamine to the perfusion media stimulated GDH flux approximately 6-fold at both glucose concentrations without affecting insulin secretion rates. In conclusion, these data support the hypothesis that a signal generated by anaplerosis from increased pyruvate carboxylase flux is essential for glucose-stimulated insulin secretion in beta-cells and that anaplerosis through GDH does not play a major role in this process.  相似文献   

5.

Background  

The cellular responses of bacteria to superoxide stress can be used to model adaptation to severe environmental changes. Superoxide stress promotes the excessive production of reactive oxygen species (ROS) that have detrimental effects on cell metabolic and other physiological activities. To antagonize such effects, the cell needs to regulate a range of metabolic reactions in a coordinated way, so that coherent metabolic responses are generated by the cellular metabolic reaction network as a whole. In the present study, we have used a quantitative metabolic flux analysis approach, together with measurement of gene expression and activity of key enzymes, to investigate changes in central carbon metabolism that occur in Escherichia coli in response to paraquat-induced superoxide stress. The cellular regulatory mechanisms involved in the observed global flux changes are discussed.  相似文献   

6.

Background  

Filamin is an actin binding protein which is ubiquitous in eukaryotes and its basic structure is well conserved – an N-terminal actin binding domain followed by a series of repeated segments which vary in number in different organisms. D. discoideum is a well established model organism for the study of signalling pathways and the actin cytoskeleton and as such makes an excellent organism in which to study filamin. Ddfilamin plays a putative role as a scaffolding protein in a photosensory signalling pathway and this role is thought to be mediated by the unusual repeat segments in the rod domain.  相似文献   

7.
Protein Nε‐acylation is emerging as a ubiquitous post‐translational modification. In Corynebacterium glutamicum, which is utilized for industrial production of l ‐glutamate, the levels of protein acetylation and succinylation change drastically under the conditions that induce glutamate overproduction. Here, the acylation of phosphoenolpyruvate carboxylase (PEPC), an anaplerotic enzyme that supplies oxaloacetate for glutamate overproduction was characterized. It was shown that acetylation of PEPC at lysine 653 decreased enzymatic activity, leading to reduced glutamate production. An acetylation‐mimic (KQ) mutant of K653 showed severely reduced glutamate production, while the corresponding KR mutant showed normal production levels. Using an acetyllysine‐incorporated PEPC protein, we verified that K653‐acetylation negatively regulates PEPC activity. In addition, NCgl0616, a sirtuin‐type deacetylase, deacetylated K653‐acetylated PEPC in vitro. Interestingly, the specific activity of PEPC was increased during glutamate overproduction, which was blocked by the K653R mutation or deletion of sirtuin‐type deacetylase homologues. These findings suggested that deacetylation of K653 by NCgl0616 likely plays a role in the activation of PEPC, which maintains carbon flux under glutamate‐producing conditions. PEPC deletion increased protein acetylation levels in cells under glutamate‐producing conditions, supporting the hypothesis that PEPC is responsible for a large carbon flux change under glutamate‐producing conditions.  相似文献   

8.

Background  

To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis.  相似文献   

9.

Background  

The Arabidopsis response regulator 22 (ARR22) is one of two members of a recently defined novel group of two-component system (TCS) elements. TCSs are stimulus perception and response modules of prokaryotic origin, which signal by a His-to-Asp phosphorelay mechanism. In plants, TCS regulators are involved in hormone response pathways, such as those for cytokinin and ethylene. While the functions of the other TCS elements in Arabidopsis, such as histidine kinases (AHKs), histidine-containing phosphotransfer proteins (AHPs) and A-type and B-type ARRs are becoming evident, the role of ARR22 is poorly understood.  相似文献   

10.

Background  

Upon appropriate stimulation, plants increase their level of resistance against future pathogen attack. This phenomenon, known as induced resistance, presents an adaptive advantage due to its reduced fitness costs and its systemic and broad-spectrum nature. In Arabidopsis, different types of induced resistance have been defined based on the signaling pathways involved, particularly those dependent on salicylic acid (SA) and/or jasmonic acid (JA).  相似文献   

11.
12.

Aim

To determine the palaeoecological influences of climate change and human land use on the spatial distribution patterns of Polylepis woodlands in the Andes.

Location

Tropical Andes above 2,900 m between 2°S and 18°S of latitude.

Methods

Pollen and charcoal data were gathered from 13 Andean lake sediment records and were rescaled by the maximum value in each site. The rescaled pollen data were used to estimate a mean abundance and coefficient of variation to show woodland expansions/contractions and woodland fragmentation over the last 20,000 years. The rescaled charcoal was displayed as a 200‐year moving median using 500‐year bins to infer the influence of fire on woodland dynamics at landscape scale. Pollen and charcoal were compared with speleothem, clastic flux and archaeological data to assess the influence of moisture balance, glacial activity and human impact on the spatial distribution of Polylepis woodlands.

Results

Woodland expansion and fire were correlated with precipitation changes and glacier dynamics from c. 20 to 6 kcal bp (thousands of calibrated years before present). Charcoal abundances between 20 and 12 kcal bp were less common than from 12 kcal bp to modern. However, human‐induced fires were unlikely to be the main cause of a woodland decline centred at 11 kcal bp , as woodlands recovered from 10.5 to 9.5 kcal bp (about twofold increase). Charcoal peaks analogous to those that induced the woodland decline at 11 kcal bp were commonplace post‐9.5 kcal bp but did not trigger an equivalent woodland contraction. An increase in the coefficient of variation after c. 5.5 kcal bp suggests enhanced fragmentation and coincided with the shift from logistic to exponential growth of human populations. Over the last 1,000 years, Polylepis became hyper‐fragmented with over half of sites losing Polylepis from the record and with coefficients of variation paralleling those of glacial times.

Main conclusions

Polylepis woodlands formed naturally patchy woodlands, rather than a continuous vegetation belt, prior to human occupation in the Andes. The main factors controlling pre‐human woodland dynamics were precipitation and landscape heterogeneity. Human activity led to hyper‐fragmentation during the last c. 1,000 years.  相似文献   

13.

Background  

Altered neuronal vulnerability underlies many diseases of the human nervous system, resulting in degeneration and loss of neurons. The neuroprotective slow Wallerian degeneration (Wld s ) mutation delays degeneration in axonal and synaptic compartments of neurons following a wide range of traumatic and disease-inducing stimuli, providing a powerful experimental tool with which to investigate modulation of neuronal vulnerability. Although the mechanisms through which Wld s confers neuroprotection remain unclear, a diverse range of downstream modifications, incorporating several genes/pathways, have been implicated. These include the following: elevated nicotinamide adenine dinucleotide (NAD) levels associated with nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1; a part of the chimeric Wld s gene); altered mRNA expression levels of genes such as pituitary tumor transforming gene 1 (Pttg1); changes in the location/activity of the ubiquitin-proteasome machinery via binding to valosin-containing protein (VCP/p97); and modified synaptic expression of proteins such as ubiquitin-activating enzyme E1 (Ube1).  相似文献   

14.
Mathematical models of the TCA cycle derived previously for 14C tracer studies have been extended to 13C NMR to measure the 13C fractional enrichment of [2-13C]acetyl-CoA entering the cycle and the relative activities of the oxidative versus anaplerotic pathways. The analysis is based upon the steady-state enrichment of 13C into the glutamate carbons. Hearts perfused with [2-13C]acetate show low but significant activity of the anaplerotic pathways. Activation of two different anaplerotic pathways is demonstrated by addition of unlabeled propionate or pyruvate to hearts perfused with [2-13C]acetate. In each case, the amount of [2-13C]acetate being oxidized and the relative carbon flux through anaplerotic versus oxidative pathways are evaluated.  相似文献   

15.

Background  

Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE). Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE.  相似文献   

16.

Background  

Plant lipoxygenases (LOXs) have been proposed to form biologically active compounds both during normal developmental stages such as germination or growth as well as during responses to environmental stress such as wounding or pathogen attack. In our previous study, we found that enzyme activity of endogenous 9-LOX in Nicotiana benthamiana was highly induced by agroinfiltration using a tobacco mosaic virus (TMV) based vector system.  相似文献   

17.
Triheptanoin, the triglyceride of heptanoate, is anaplerotic (refills deficient tricarboxylic acid cycle intermediates) via the propionyl‐CoA carboxylase pathway. It has been shown to be neuroprotective and anticonvulsant in several models of neurological disorders. Here, we investigated the effects of triheptanoin against changes of hippocampal mitochondrial functions, oxidative stress and cell death induced by pilocarpine‐induced status epilepticus (SE ) in mice. Ten days of triheptanoin pre‐treatment did not protect against SE , but it preserved hippocampal mitochondrial functions including state 2, state 3 ADP , state 3 uncoupled respiration, respiration linked to ATP synthesis along with the activities of pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex 24 h post‐SE . Triheptanoin prevented the SE ‐induced reductions of hippocampal mitochondrial superoxide dismutase activity and plasma antioxidant status as well as lipid peroxidation. It also reduced neuronal degeneration in hippocampal CA 1 and CA 3 regions 3 days after SE . In addition, heptanoate significantly reduced hydrogen peroxide‐induced cell death in cultured neurons. In situ hybridization localized the enzymes of the propionyl‐CoA carboxylase pathway, specifically Pcc α, Pcc β and methylmalonyl‐CoA mutase to adult mouse hippocampal pyramidal neurons and dentate granule cells, indicating that anaplerosis may occur in neurons. In conclusion, triheptanoin appears to have anaplerotic and antioxidant effects which contribute to its neuroprotective properties.

  相似文献   

18.

Background  

Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection.  相似文献   

19.

Background  

Identifying genes and pathways associated with diseases such as cancer has been a subject of considerable research in recent years in the area of bioinformatics and computational biology. It has been demonstrated that the magnitude of differential expression does not necessarily indicate biological significance. Even a very small change in the expression of particular gene may have dramatic physiological consequences if the protein encoded by this gene plays a catalytic role in a specific cell function. Moreover, highly correlated genes may function together on the same pathway biologically. Finally, in sparse logistic regression withL p (p< 1) penalty, the degree of the sparsity obtained is determined by the value of the regularization parameter. Usually this parameter must be carefully tuned through cross-validation, which is time consuming.  相似文献   

20.

Background  

The Wnt/Wg pathway plays an important role in the developmental program of many cells and tissues in a variety of organisms. In addition, many Wnts and components of their downstream signaling pathways, such as β-catenin and APC, have been implicated in tumorigenesis. Over the past years, several genes have been identified as Wnt responsive, including c-myc, siamois, and cyclin D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号