首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The leaves of globe artichoke and cultivated cardoon (Cynara cardunculus L.) have significant pharmaceutical properties, which mainly result from their high content of polyphenolic compounds such as monocaffeoylquinic and dicaffeoylquinic acid (DCQ), and a range of flavonoid compounds.  相似文献   

2.
3.

Background and Aims

Globe artichoke and leafy cardoon, two crops within the same species Cynara cardunculus, are traditionally cultivated in the Mediterranean region and play a significant role in the agricultural economy of this area. The two cultigens have different reproductive systems: artichoke is generally vegetatively propagated, while leafy cardoon is seed propagated. The domestication events underlying the origin of both artichoke and cultivated cardoon from their wild relative and the area of occurrence are not yet fully understood. The aim of this study was to investigate population structure in wild cardoon, globe artichoke and leafy cardoon material and infer domestication events.

Methods

Thirty-five microsatellite (simple sequence repeat) markers, distributed in the C. cardunculus genome, and a large geographical and numerical sampling in southern Europe and North Africa were used to assess population structure and diversity.

Key Results

The results suggest the presence of two distinct domestication events for artichoke and leafy cardoon, and also suggest a new possible scenario, with western wild cardoon having originated from cultivated cardoon escaped from cultivation. Evidence was found for a demographic bottleneck in the past history of globe artichoke.

Conclusions

The results shed new light on the relationships between the three taxa of C. cardunculus and highlight relevant aspects on the evolution of domestication of two crops with a different reproductive system within the same species. It is proposed that the probable centre of origin of artichoke is located in southern Italy, probably Sicily.  相似文献   

4.

Background  

The evolution of sex chromosomes is often accompanied by gene or chromosome rearrangements. Recently, the gene AP3 was characterized in the dioecious plant species Silene latifolia. It was suggested that this gene had been transferred from an autosome to the Y chromosome.  相似文献   

5.
6.
7.
8.

Background  

Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula.  相似文献   

9.

Background  

Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages.  相似文献   

10.

Background  

In addition to studies of plant gene function and developmental analyses, plant biotechnological use is largely dependent upon transgenic technologies. The moss Physcomitrella patens has become an exciting model system for studying plant molecular processes due to an exceptionally high rate of nuclear gene targeting by homologous recombination compared with other plants. However, its use in transgenic approaches requires expression vectors that incorporate sufficiently strong promoters. To satisfy this requirement, a set of plant expression vectors was constructed and equipped with either heterologous or endogenous promoters.  相似文献   

11.

Background  

Endogenous pararetroviral sequences (EPRVs) are a recently discovered class of repetitive sequences that is broadly distributed in the plant kingdom. The potential contribution of EPRVs to plant pathogenicity or, conversely, to virus resistance is just beginning to be explored. Some members of the family Solanaceae are particularly rich in EPRVs. In previous work, EPRVs have been characterized molecularly in various species of Nicotiana including N.tabacum (tobacco) and Solanum tuberosum (potato). Here we describe a family of EPRVs in cultivated tomato (Solanum lycopersicum L.) and a wild relative (S.habrochaites).  相似文献   

12.
13.
14.

Background  

Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown.  相似文献   

15.

Background  

The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss Physcomitrella patens provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss P. patens.  相似文献   

16.

Background  

Ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes that catalyze the electron transfer between NADP(H) and the proteins ferredoxin or flavodoxin. A number of structural features distinguish plant and bacterial FNRs, one of which is the mode of the cofactor FAD binding. Leptospira interrogans is a spirochaete parasitic bacterium capable of infecting humans and mammals in general. Leptospira interrogans FNR (LepFNR) displays low sequence identity with plant (34% with Zea mays) and bacterial (31% with Escherichia coli) FNRs. However, LepFNR contains all consensus sequences that define the plastidic class FNRs.  相似文献   

17.

Background  

Cysteine is a component in organic compounds including glutathione that have been implicated in the adaptation of plants to stresses. O-acetylserine (thiol) lyase (OAS-TL) catalyses the final step of cysteine biosynthesis. OAS-TL enzyme isoforms are localised in the cytoplasm, the plastids and mitochondria but the contribution of individual OAS-TL isoforms to plant sulphur metabolism has not yet been fully clarified.  相似文献   

18.
19.

Background  

Rice blast disease is caused by the filamentous Ascomycetous fungus Magnaporthe oryzae and results in significant annual rice yield losses worldwide. Infection by this and many other fungal plant pathogens requires the development of a specialized infection cell called an appressorium. The molecular processes regulating appressorium formation are incompletely understood.  相似文献   

20.

Background  

Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号