首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorylation of Type I restriction-modification (R-M) enzymes EcoKI, EcoAI, and EcoR124I - representatives of IA, IB, and IC families, respectively - was analysed in vivo by immunoblotting of endogenous phosphoproteins isolated from Escherichia coli strains harbouring the corresponding hsd genes, and in vitro by a phosphorylation assay using protein kinase present in subcellular fractions of E. coli. From all three R-M enzymes, the HsdR subunit of EcoKI system was the only subunit that was phosphorylated. Further, evidence is presented that HsdR is phosphorylated in vivo only when coproduced with HsdM and HsdS subunits - as part of assembled EcoKI restriction endonuclease, while the individually produced HsdR subunit is not phosphorylated. In vitro phosphorylation of the HsdR subunit of purified EcoKI endonuclease occurs on Thr, and is strictly dependent on the addition of a catalytic amount of cytoplasmic fraction isolated from E. coli. So far this is the first case of phosphorylation of a Type I R-M enzyme reported.  相似文献   

2.
The HsdS subunit of a type I restriction-modification (R-M) system plays an essential role in the activity of both the modification methylase and the restriction endonuclease. This subunit is responsible for DNA binding, but also contains conserved amino acid sequences responsible for protein-protein interactions. The most important protein-protein interactions are those between the HsdS subunit and the HsdM (methylation) subunit that result in assembly of an independent methylase (MTase) of stoichiometry M(2)S(1). Here, we analysed the impact on the restriction and modification activities of the change Trp(212)-->Arg in the distal border of the central conserved region of the EcoR124I HsdS subunit. We demonstrate that this point mutation significantly influences the ability of the mutant HsdS subunit to assemble with the HsdM subunit to produce a functional MTase. As a consequence of this, the mutant MTase has drastically reduced DNA binding, which is restored only when the HsdR (restriction) subunit binds with the MTase. Therefore, HsdR acts as a chaperon allowing not only binding of the enzyme to DNA, but also restoring the methylation activity and, at sufficiently high concentrations in vitro of HsdR, restoring restriction activity.  相似文献   

3.
The Type I restriction-modification enzymes comprise three protein subunits; HsdS and HsdM that form a methyltransferase (MTase) and HsdR that associates with the MTase and catalyses Adenosine-5'-triphosphate (ATP)-dependent DNA translocation and cleavage. Here, we examine whether the MTase and HsdR components can 'turnover' in vitro, i.e. whether they can catalyse translocation and cleavage events on one DNA molecule, dissociate and then re-bind a second DNA molecule. Translocation termination by both EcoKI and EcoR124I leads to HsdR dissociation from linear DNA but not from circular DNA. Following DNA cleavage, the HsdR subunits appear unable to dissociate even though the DNA is linear, suggesting a tight interaction with the cleaved product. The MTases of EcoKI and EcoAI can dissociate from DNA following either translocation or cleavage and can initiate reactions on new DNA molecules as long as free HsdR molecules are available. In contrast, the MTase of EcoR124I does not turnover and additional cleavage of circular DNA is not observed by inclusion of RecBCD, a helicase-nuclease that degrades the linear DNA product resulting from Type I cleavage. Roles for Type I restriction endonuclease subunit dynamics in restriction alleviation in the cell are discussed.  相似文献   

4.
Type I restriction-modification (R-M) enzymes are composed of three different subunits, of which HsdS determines DNA specificity, HsdM is responsible for DNA methylation and HsdR is required for restriction. The HsdM and HsdS subunits can also form an independent DNA methyltransferase with a subunit stoichiometry of M2S1. We found that the purified Eco R124I R-M enzyme was a mixture of two species as detected by the presence of two differently migrating specific DNA-protein complexes in a gel retardation assay. An analysis of protein subunits isolated from the complexes indicated that the larger species had a stoichiometry of R2M2S1and the smaller species had a stoichiometry of R1M2S1. In vitro analysis of subunit assembly revealed that while binding of the first HsdR subunit to the M2S1complex was very tight, the second HsdR subunit was bound weakly and it dissociated from the R1M2S1complex with an apparent K d of approximately 2.4 x 10(-7) M. Functional assays have shown that only the R2M2S1complex is capable of DNA cleavage, however, the R1M2S1complex retains ATPase activity. The relevance of this situation is discussed in terms of the regulation of restriction activity in vivo upon conjugative transfer of a plasmid-born R-M system into an unmodified host cell.  相似文献   

5.
Type I restriction endonucleases are composed of three subunits, HsdR, HsdM and HsdS. The HsdR subunit is absolutely required for restriction activity; while an independent methylase is composed of HsdM and HsdS subunits. DNA cleavage is associated with a powerful ATPase activity during which DNA is translocated by the enzyme prior to cleavage. The presence of a Walker type I ATP-binding site within the HsdR subunit suggested that the subunit may be capable of independent enzymatic activity. Therefore, we have, for the first time, cloned and over-expressed the hsdRgene of the type IC restriction endonuclease EcoR124II. The purified HsdR subunit was found to be a soluble monomeric protein capable of DNA- and Mg2+-dependent ATP hydrolysis. The subunit was found to have a weak nuclease activity both in vivo and in vitro, and to bind plasmid DNA; although was not capable of binding a DNA oligoduplex. We were also able to reconstitute the fully active endonuclease from purified M. EcoR124I and HsdR. This is the first clear demonstration that the HsdR subunit of a type I restriction endonuclease is capable of independent enzyme activity, and suggests a mechanism for the evolution of the endonuclease from the independent methylase.  相似文献   

6.
Three genes coding for a type I R-M system related to the class C enzymes have been identified on the chromosome of Lactococcus lactis strain IL1403. In addition, plasmids were found that encode only the HsdS subunit that directs R-M specificity. The presence of these plasmids in IL1403 conferred a new R-M phenotype on the host, indicating that the plasmid-encoded HsdS is able to interact with the chromosomally encoded HsdR and HsdM subunits. Such combinational variation of type I R-M systems may facilitate the evolution of their specificity and thus reinforce bacterial resistance against invasive foreign unmethylated DNA.  相似文献   

7.
J Patel  I Taylor  C F Dutta  G Kneale  K Firman 《Gene》1992,112(1):21-27
We have cloned the genes coding for the two subunits (HsdM and HsdS) of the type-I DNA methyltransferase (MTase), M.EcoR124, into the specially constructed expression vector, pJ119. These subunits have been synthesized together as an intact MTase. We have also cloned the individual subunit-encoding genes under the control of the T7 gene 10 promoter or the lacUV5 promoter. High levels of expression have been obtained in all cases. While HsdM was found to be soluble, HsdS was insoluble. However, in the presence of the co-produced HsdM subunit, HsdS was found in the soluble fraction as part of an active MTase. We have partially purified the cloned multi-subunit enzyme and shown that it is capable of DNA methylation both in vivo and in vitro.  相似文献   

8.
Type I restriction-modification (RM) systems are large, multifunctional enzymes composed of three different subunits. HsdS and HsdM form a complex in which HsdS recognizes the target DNA sequence, and HsdM carries out methylation of adenosine residues. The HsdR subunit, when associated with the HsdS-HsdM complex, translocates DNA in an ATP-dependent process and cleaves unmethylated DNA at a distance of several thousand base-pairs from the recognition site. The molecular mechanism by which these enzymes translocate the DNA is not fully understood, in part because of the absence of crystal structures. To date, crystal structures have been determined for the individual HsdS and HsdM subunits and models have been built for the HsdM-HsdS complex with the DNA. However, no structure is available for the HsdR subunit. In this work, the gene coding for the HsdR subunit of EcoR124I was re-sequenced, which showed that there was an error in the published sequence. This changed the position of the stop codon and altered the last 17 amino acid residues of the protein sequence. An improved purification procedure was developed to enable HsdR to be purified efficiently for biophysical and structural analysis. Analytical ultracentrifugation shows that HsdR is monomeric in solution, and the frictional ratio of 1.21 indicates that the subunit is globular and fairly compact. Small angle neutron-scattering of the HsdR subunit indicates a radius of gyration of 3.4 nm and a maximum dimension of 10 nm. We constructed a model of the HsdR using protein fold-recognition and homology modelling to model individual domains, and small-angle neutron scattering data as restraints to combine them into a single molecule. The model reveals an ellipsoidal shape of the enzymatic core comprising the N-terminal and central domains, and suggests conformational heterogeneity of the C-terminal region implicated in binding of HsdR to the HsdS-HsdM complex.  相似文献   

9.
We purified and characterized both the methyltransferase and the endonuclease containing the HsdS delta 50 subunit (type I restriction endonucleases are composed of three subunits--HsdR required for restriction, HsdM required for methylation and HsdS responsible for DNA recognition) produced from the deletion mutation hsdS delta 50 of the type IC R-M system EcoR 124I; this mutant subunit lacks the C-terminal 163 residues of HsdS and produces a novel DNA specificity. Analysis of the purified HsDs delta 50 subunit indicated that during purification it is subject to partial proteolysis resulting in removal of approximately 1 kDa of the polypeptide at the C-terminus. This proteolysis prevented the purification of further deletion mutants, which were determined as having a novel DNA specificity in vivo. After biochemical characterization of the mutant DNA methyltransferase (MTase) and restriction endonuclease we found only one difference comparing with the wild-type enzyme--a significantly higher binding affinity of the MTase for the two substrates of hemimethylated and fully methylated DNA. This indicates that MTase delta 50 is less able to discriminate the methylation status of the DNA during its binding. However, the mutant MTase still preferred hemimethylated DNA as the substrate for methylation. We fused the hsdM and hsdS delta 50 genes and showed that the HsdM-HsdS delta 50 fusion protein is capable of dimerization confirming the model for assembly of this deletion mutant.  相似文献   

10.
Type I restriction-modification (R-M) endonucleases are composed of three subunits—HsdR, required for restriction, and HsdM and HsdS which can produce a separate DNA methyltransferase. The HsdS subunit is required for DNA recognition. In this paper we describe the effect of clonedEcoKI andEcoR124Ihsd genes on the resulting R-M phenotype. The variability in the expression of the wild type (wt) restriction phenotype after cloning of the wthsd genes in a multicopy plasmid inEscherichia coli recA + background suggests that the increased production of the restriction endonuclease from pBR322 is detrimental to the cell and this leads to the deletion of the clonedhsd genes from the hybrid plasmid and/or inactivation of the enzyme. The effect of a mutation inE. coli recA gene on the expression of R-M phenotype is described and discussed in relation to the role of the cell surface and the localization of the restriction endonuclease in the cell.  相似文献   

11.
The HsdS and HsdM polypeptides of the type IC restriction enzyme EcoR124 have been purified independently and used in a set of gel retardation experiments to determine the minimum requirements for sequence-specific recognition of DNA by this enzyme. The HsdS polypeptide alone is able to bind to DNA in a sequence-specific manner. In addition, whilst the presence of the HsdM polypeptide gives rise to a stimulation of DNA binding by the HsdS subunit it is not clear whether, under the conditions of the experiments reported here, the HsdS subunit maintains the same interactions with the HsdM subunits observed in the absence of DNA.  相似文献   

12.
Recent publication of crystal structures for the putative DNA-binding subunits (HsdS) of the functionally uncharacterized Type I restriction–modification (R-M) enzymes MjaXIP and MgeORF438 have provided a convenient structural template for analysis of the more extensively characterized members of this interesting family of multisubunit molecular motors. Here, we present a structural model of the Type IC M.EcoR124I DNA methyltransferase (MTase), comprising the HsdS subunit, two HsdM subunits, the cofactor AdoMet and the substrate DNA molecule. The structure was obtained by docking models of individual subunits generated by fold-recognition and comparative modelling, followed by optimization of inter-subunit contacts by energy minimization. The model of M.EcoR124I has allowed identification of a number of functionally important residues that appear to be involved in DNA-binding. In addition, we have mapped onto the model the location of several new mutations of the hsdS gene of M.EcoR124I that were produced by misincorporation mutagenesis within the central conserved region of hsdS, we have mapped all previously identified DNA-binding mutants of TRD2 and produced a detailed analysis of the location of surface-modifiable lysines. The model structure, together with location of the mutant residues, provides a better background on which to study protein–protein and protein–DNA interactions in Type I R-M systems.  相似文献   

13.
The hsdR, hsdM and hsdS genes coding for R.EcoK restriction endonuclease, both with and without a temperature sensitive mutation (ts-1) in the hsdS gene, were cloned in pBR322 plasmid and introduced into E.coli C3-6. The presence of the hsdSts-1 mutation has no effect on the R-M phenotype of this construct in bacteria grown at 42 degrees C. However, DNA sequencing indicates that the mutation is still present on the pBR322-hsdts-1 operon. The putative temperature-sensitive endonuclease was purified from bacteria carrying this plasmid and the ability to cleave and methylate plasmid DNA was investigated. The mutant endonuclease was found to show temperature-sensitivity for restriction. Modification was dramatically reduced at both the permissive and non-permissive temperatures. The wild type enzyme was found to cleave circular DNA in a manner which strongly suggests that only one endonuclease molecule is required per cleavage event. Circular and linear DNA appear to be cleaved using different mechanisms, and cleavage of linear DNA may require a second endonuclease molecule. The subunit composition of the purified endonucleases was investigated and compared to the level of subunit production in minicells. There is no evidence that HsdR is prevented from assembling with HsdM and HsdSts-1 to produce the mutant endonuclease. The data also suggests that the level of HsdR subunit may be limiting within the cell. We suggest that an excess of HsdM and HsdS may produce the methylase in vivo and that assembly of the endonuclease may be dependent upon the prior production of this methylase.  相似文献   

14.
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)(2) is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)(2) complex is able to bind to both the EcoR124I DNA recognition sequence GAAN(6)RTCG and a symmetrical DNA sequence GAAN(7)TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)(2) -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)(2) complex.  相似文献   

15.
The type I DNA methyltransferase M.EcoR124I consists of two methylation subunits (HsdM) and one DNA recognition subunit (HsdS). When expressed independently, HsdS is insoluble, but this subunit can be obtained in soluble form as a GST fusion protein. We show that the HsdS subunit, even as a fusion protein, is unable to form a discrete complex with its DNA recognition sequence. When HsdM is added to the HsdS fusion protein, discrete complexes are formed but these are unable to methylate DNA. The two complexes formed correspond to species with one or two copies of the HsdM subunit, indicating that blocking the N-terminus of HsdS affects one of the HsdM binding sites. However, removal of the GST moiety from such complexes results in tight and specific DNA binding and restores full methylation activity. The results clearly demonstrate the importance of the HsdM subunit for DNA binding, in addition to its catalytic role in the methyltransferase reaction.  相似文献   

16.
17.
Cellular localization of Type I restriction-modification enzymes EcoKI, EcoAI, and EcoR124I-the most frequently studied representatives of IA, IB, and IC families-was analyzed by immunoblotting of subcellular fractions isolated from Escherichia coli strains harboring the corresponding hsd genes. EcoR124I shows characteristics similar to those of EcoKI. The complex enzymes are associated with the cytoplasmic membrane via DNA interaction as documented by the release of the Hsd subunits from the membrane into the soluble fraction following benzonase treatment. HsdR subunits of the membrane-bound enzymes EcoKI and EcoR124I are accessible, though to a different extent, at the external surface of cytoplasmic membrane as shown by trypsinization of intact spheroplasts. EcoAI strongly differs from EcoKI and EcoR124I, since neither benzonase nor trypsin affects its association with the cytoplasmic membrane. Possible reasons for such a different organization are discussed in relation of the control of the restriction-modification activities in vivo.  相似文献   

18.
Restriction alleviation (RA) by the type I restriction enzyme EcoKI is caused by treatments that damage DNA. RA is due to proteolysis of the EcoKI HsdR subunit by the ClpXP ATP-dependent protease. Here we show that the modification-dependent enzyme McrBC is not subject to RA, although it is moderately sensitive to ClpAP.  相似文献   

19.
Type I restriction-modification (R-M) systems encode multisubunit/multidomain enzymes. Two genes (M and S) are required to form the methyltransferase (MTase) that methylates a specific base within the recognition sequence and protects DNA from cleavage by the endonuclease. The DNA methyltransferase M.AhdI is a 170 kDa tetramer with the stoichiometry M(2)S(2) and has properties typical of a type I MTase. The M.AhdI enzyme has been prepared with deuterated S subunits, to allow contrast variation using small-angle neutron scattering (SANS) methods. The SANS data were collected in a number of (1)H:(2)H solvent contrasts to allow matching of one or other of the subunits in the multisubunit enzyme. The radius of gyration (R(g)) and maximum dimensions (D(max)) of the M subunits in situ in the multisubunit enzyme (50 A and 190 A, respectively) are close of those of the entire MTase (51 A and 190 A). In contrast, the S subunits in situ have experimentally determined values of R(g)=35 A and D(max)=110 A, indicating their more central location in the enzyme. Ab initio reconstruction methods yield a low-resolution structural model of the shape and subunit organization of M.AhdI, in which the Z-shaped structure of the S subunit dimer can be discerned. In contrast, the M subunits form a much more elongated and extended structure. The core of the MTase comprises the two S subunits and the globular regions of the two M subunits, with the extended portion of the M subunits most probably forming highly mobile regions at the outer extremities, which collapse around the DNA when the MTase binds.  相似文献   

20.
We report the properties of the new AloI restriction and modification enzyme from Acinetobacter lwoffi Ks 4-8 that recognizes the DNA target 5' GGA(N)6GTTC3' (complementary strand 5' GAAC(N)6TCC3'), and the nucleotide sequence of the gene encoding this enzyme. AloI is a bifunctional large polypeptide (deduced M(r) 143 kDa) revealing both DNA endonuclease and methyltransferase activities. Depending on reaction cofactors, AloI cleaves double-stranded DNA on both strands, seven bases on the 5' side, and 12-13 bases on the 3' side of its recognition sequence, and modifies adenine residues in both DNA strands in the target sequence yielding N6-methyladenine. For cleavage activity AloI maintains an absolute requirement for Mg(2+) and does not depend on or is stimulated by either ATP or S-adenosyl-L-methionine. Modification function requires the presence of S-adenosyl-L-methionine and is stimulated by metal ions (Ca(2+)). The C-terminal and central parts of the protein were found to be homologous to certain specificity (HsdS) and modification (HsdM) subunits of type I R-M systems, respectively. The N-terminal part of the protein possesses the putative endonucleolytic motif DXnEXK of restriction endonucleases. The deduced amino acid sequence of AloI shares significant homology with polypeptides encoding HaeIV and CjeI restriction-modification proteins at the N-terminal and central, but not at the C-terminal domains. The organization of AloI implies that its evolution involved fusion of an endonuclease and the two subunits, HsdM and HsdS, of type I restriction enzymes. According to the structure and function properties AloI may be regarded as one more representative of a newly emerging group of HaeIV-like restriction endonucleases. Discovery of these enzymes opens new opportunities for constructing restriction endonucleases with a new specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号