首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbapenems are β-lactam antibiotics which have an increasing utility in chemotherapy, particularly for nosocomial, multidrug-resistant infections. Strain GS101 of the bacterial phytopathogen, Erwinia carotovora , makes the simple β-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have mapped and sequenced the Erwinia genes encoding carbapenem production and have cloned these genes into Escherichia coli where we have reconstituted, for the first time, functional expression of the β-lactam in a heterologous host. The carbapenem synthesis gene products are unrelated to enzymes involved in the synthesis of the so-called sulphur-containing β-lactams, namely penicillins, cephamycins and cephalosporins. However, two of the carbapenem biosynthesis genes, carA and carC , encode proteins which show significant homology with proteins encoded by the Streptomyces clavuligerus gene cluster responsible for the production of the β-lactamase inhibitor, clavulanic acid. These homologies, and some similarities in genetic organization between the clusters, suggest an evolutionary relatedness between some of the genes encoding production of the antibiotic and the β-lactamase inhibitor. Our observations are consistent with the evolution of a second major biosynthetic route to the production of β-lactam-ring-containing antibiotics.  相似文献   

2.
Cephamycin C is produced in a nine steps pathway by the actinomycetes S. clavuligerus and N. lactamdurans. The genes encoding the biosynthesis enzymes are clustered in both microorganisms as well as in the cephabacin producer Lysobacter lactamgenus, a Gram negative bacterium. The clusters of genes include genes encoding enzymes common to the biosynthesis of penicillin and cephalosporin C by the eukaryotic producers Penicillium chrysogenum and Cephalosporiun acremonium and genes for steps specific for the formation of the precursor -aminoadipic acid as well as for the enzymes involved in the late modification of the cephalosporin intermediates of the pathway. Present are also genes for proteins involved in the export and/or resistance to cephamycin C. In S. clavuligerus a gene encoding a regulatory protein controlling the formation of cephamycin C and clavulanic acid is also present in the cluster.  相似文献   

3.
4.
Erwinia herbicola is a nonphotosynthetic bacterium that is yellow pigmented due to the presence of carotenoids. When the Erwinia carotenoid biosynthetic genes are expressed in Escherichia coli, this bacterium also displays a yellow phenotype. The DNA sequence of the plasmid pPL376, carrying the entire Erwinia carotenoid gene cluster, has been found to contain 12 open reading frames (ORFs). Six of the ORFs have been identified as carotenoid biosynthesis genes that code for all the enzymes required for conversion of farnesyl pyrophosphate (FPP) to zeaxanthin diglucoside via geranylgeranyl pyrophosphate, phytoene, lycopene, -carotene, and zeaxanthin. These enzymatic steps were assigned after disruption of each ORF by a specific mutation and analysis of the accumulated intermediates. Carotenoid intermediates were identified by the absorption spectra of the colored components and by high pressure liquid chromatographic analysis. The six carotenoid genes are arranged in at least two operons. The gene coding for -carotene hydroxylase is transcribed in the opposite direction from that of the other carotenoid genes and overlaps with the gene for phytoene synthase.  相似文献   

5.
The biosynthesis of clavulanic acid and related clavam metabolites is only now being elucidated. Understanding of this pathway has resulted from a combination of both biochemical studies of purified biosynthetic enzymes, and molecular genetic studies of the genes encoding these enzymes. Clavulanic acid biosynthesis has been most thoroughly investigated in Streptomyces clavuligerus where the biosynthetic gene cluster resides immediately adjacent to the cluster of cephamycin biosynthetic genes. A minimum of eight structural genes have been implicated in clavulanic acid biosynthesis, although more are probably involved. While details of the early and late steps of the pathway remain unclear, synthesis proceeds from arginine and pyruvate, as the most likely primary metabolic precursors, through the monocyclic -lactam intermediate, proclavaminic acid, to the bicyclic intermediate, clavaminic acid, which is a branch point leading either to clavulanic acid or the other clavams. Conversion of clavaminic acid to clavulanic acid requires side chain modfication as well as inversion of ring stereochemistry. This stereochemical change occurs coincident with acquisition of the -lactamase inhibitory activity which gives clavulanic acid its therapeutic and commercial importance. In contrast, the other clavam metabolites all arise from clavaminic acid with retention of configuration and lack -lactamase inhibitory activity.  相似文献   

6.
7.
Summary In the last decade numerous genes involved in the biosynthesis of antibiotics, pigments, herbicides and other secondary metabolites have been cloned. The genes involved in the biosynthesis of penicillin, cephalosporin and cephamycins are organized in clusters as occurs also with the biosynthetic genes of other antibiotics and secondary metabolites (see review by Martín and Liras [65]). We have cloned genes involved in the biosynthesis of -lactam antibiotics from five different -lactam producing organisms both eucaryotic (Penicillium chrysogenum, Cephalosporium acremonium (syn.Acremonium chrysogenum) Aspergillus nidulans) and procaryotic (Nocardia lactamdurans, Streptomyces clavuligerus). InP. chrysogenum andA. nidulans the organization of thepcbAB,pcbC andpenDE genes for ACV synthetase, IPN synthase and IPN acyltransferase showed a similar arrangement. InA. chrysogenum two different clusters of genes have been cloned. The cluster of early genes encodes ACV synthetase and IPN synthase, whereas the cluster of late genes encodes deacetoxycephalosporin C synthetase/hydroxylase and deacetylcephalosporin C acetyltransferase. InN. lactamdurans andS. clavuligerus a cluster of early cephamycin genes has been fully characterized. It includes thelat (for lysine-6-aminotransferase),pcbAB (for ACV synthase) andpcbC (for IPN synthase) genes. Pathway-specific regulatory genes which act in a positive (or negative) form are associated with clusters of genes involved in antibiotic biosynthesis. In addition, widely acting positive regulatory elements exert a pleiotropic control on secondary metabolism and differentiation of antibiotic producing microorganisms.The application of recombinant DNA techniques will contribute significantly to the improvement of fermentation organisms.  相似文献   

8.
9.
10.
beta-Lactam antibiotics are produced by prokaryotic and eukaryotic organisms. The genes for beta-lactam biosynthesis are organized in clusters but the location of the different genes is not identical. Biosynthesis genes are clustered with genes for resistance (bla, pbp) and for the efflux of the antibiotic (cmcT) in prokaryotes. Comparison of proteins reveals much larger differences for primary metabolism enzymes than for beta-lactam biosynthesis enzymes in producing organisms. This suggests a horizontal transfer of the beta-lactam antibiotic biosynthesis genes.  相似文献   

11.
12.
13.
14.
This review addresses the recent molecular identification of several members of the glutathione S-conjugate (GS-X) pump family, a new class of ATP-binding cassette (ABC) transporters responsible for the elimination and/or sequestration of pharmacologically and agronomically important compounds in mammalian, yeast and plant cells. The molecular structure and function of GS-X pumps encoded by MRP, cMOAT, YCF1. and AtMRP genes, have been conserved throughout molecular evolution. The physiologic function of GS-X pumps is closely related with cellular detoxification, oxidative stress, inflammation, and cancer drug resistance. Coordinated expression of GS-X pump genes, e.g., MRP1 and YCF1, and -glutamylcystaine synthetase, a rate-limiting enzyme of cellular glutathione (GSH) biosynthesis, has been frequently observed.  相似文献   

15.
The genes pcbAB, pcbC and penDE encoding enzymes that catalyze the three steps of the penicillin biosynthesis have been cloned from Penicillium chrysogenum and Aspergillus nidulans. They are located in a cluster in Penicillium chrysogenum, Penicillium notatum, Aspergillus nidulans and Penicillium nalgiovense. The three genes are clustered in chromosome I (10.4 Mb) of P. chrysogenum, in chromosome II of P. notatum (9.6 Mb) and in chromosome VI (3.0 Mb) of A. nidulans. The cluster of the penicillin biosynthetic genes is amplified in strains with high level of antibiotic production. About five to six copies of the cluster are present in the AS-P-78 strain and 11 to 14 copies in the E1 strain (an industrial isolate), whereas only one copy is present in the wild type (NRRL 1951) strain and in the low producer Wis 54-1255 strain. The amplified region in strains AS-P-78 and E1 is arranged in tandem repeats of 106.5 or 57.6-kb units, respectively. In Acremonium chrysogenum the genes involved in cephalosporin biosynthesis are separated in at least two clusters. The pcbAB and pcbC genes are linked in the so-called early cluster of genes involved in the cephalosporin biosynthesis. The late cluster, which includes the cefEF and cefG genes, is involved in the last steps of cephalosporin biosynthesis. The early cluster was located in chromosome VII (4.6 Mb) in the C10 strain and the late cluster in chromosome I (2.2 Mb). Both clusters are present in a single copy in the A. chrysogenum genome, in the wild-type and in the high cephalosporin-producing C10 strains.  相似文献   

16.
Penicillins and cephalosporins belong chemically to the group of beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Emericella nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g. Lysobacter lactamdurans (cephabacins) and Streptomyces clavuligerus (cephamycin C), respectively. For a long time the evolutionary origin of beta-lactam biosynthesis genes in fungi has been discussed. As often, there are arguments for both hypotheses, i.e., horizontal gene transfer from bacteria to fungi versus vertical descent. There were strong arguments in favour of horizontal gene transfer, e.g., fungal genes were clustered or some genes lack introns. The recent identification and characterisation of cis-/trans-elements involved in the regulation of the beta-lactam biosynthesis genes has provided new arguments in favour of horizontal gene transfer. In contrast to the bacterium S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators which were recruited to also regulate the beta-lactam biosynthesis genes. Moreover, the fungal regulatory genes are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Alternatively, it is conceivable that only a part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, e.g., the acvA and ipnA gene without a regulatory gene.  相似文献   

17.
As a result of mutational and DNA sequence analysis, a wxc gene cluster involved in the synthesis of the surface lipopolysaccharide (LPS) was identified in Xanthomonas campestris pv. campestris. This gene cluster comprises 15 genes. It was located on a cloned 35-kb fragment of chromosomal DNA, close, but not directly adjacent, to previously characterized genes for LPS biosynthesis. The G + C content of all but one of the wxc genes was atypically low for X. campestris pv. campestris, while the G + C distribution was uniform throughout the cluster. An SDS-PAGE analysis of mutant strains defective in various wxc genes confirmed that genes from this cluster were involved in LPS biosynthesis. The mutant phenotypes allowed the differentiation of three regions within the wxc cluster. Genes from wxc region 1 are necessary for the biosynthesis of the water-soluble LPS O-antigen. Analysis of DNA and deduced amino acid sequences led to the identification of two glycosyltransferases, two components of an ABC transport system, and a possible kinase among the seven putative proteins encoded by genes constituting wxc region 1. The two genes in wxc region 2 were similar to gmd and rmd, which direct the synthesis of the sugar nucleotide GDP-D-rhamnose. Mutations affecting wxc region 2 demonstrated its involvement in the formation of the LPS core. Genes from wxc region 3 showed similarities to genes that code for enzymes that modify nucleotide sugars, and to components of sugar translocation systems that have so far been rarely described in bacteria.  相似文献   

18.
To investigate the sequences responsible for the regulated expression of tapetal-specific oleosin-like genes, ca. 2 kb of the 5-upstream regions from two divergent genes, OlnB;4 and OlnB;13, were isolated, sequenced and fused to the reporter gene -glucuronidase for study in transgenic Brassica napus plants. Although the proteins encoded by these two genes are highly divergent, except for the conserved oleosin-like domain, the first 250 bp of their 5-upstream regions was 86% identical, including a region of 150 bp upstream from the TATA box. Analysis of 42 independent transformants by histochemical and fluorometric methods showed that both promoters directed tapetal-specific expression that peaked at the 4 mm flower bud stage.  相似文献   

19.
Carbapenem antibiotics are members of the beta-lactam family of antibiotics, the most important class of antibiotics currently in clinical use. They are active against many important Gram-positive and Gram-negative pathogens. One important feature of carbapenem antibiotics is their resistance to several beta-lactamases. Thienamycin, isolated from Streptomyces cattleya, was the first carbapenem described. Other well-studied carbapenems were isolated from the Gram-negative bacteria Erwinia carotovora subsp. carotovora, Serratia sp. strain ATCC39006 and Photorhabdus luminescens strain TT01. Here, we review the genetics and biochemistry of carbapenem production in these bacteria. Research into carbapenems could uncover a new repertoire of bioactive molecules and biosynthetic enzymes, and exploiting these novel enzymes could lead to development of new classes of antibiotics with useful chemotherapeutic activities.  相似文献   

20.
In an attempt to understand better the organisation of genes encoding enzymes of the ribulose monophosphate pathway (RuMP), the 3-hexulose 6-phosphate synthase gene (hps) and flanking sequences were cloned from the obligate methylotroph Aminomonas aminovorus C2A1. To date only three hps containing gene clusters from methylotrophs have been characterised and these contain genes encoding other RuMP enzymes. However, hps from A. aminovorus C2A1 was shown to be adjacent to coding sequences for products with sequence similarity to histidine biosynthesis enzymes. Furthermore, none of the hps homologue containing gene clusters, from genome sequences previously analysed or analysed in this paper, were similar in organisation to that of A. aminovorus C2A1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号