首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Summary Non-bicarbonate intracellular pH buffering values of skeletal and cardiac muscles were measured for 16 species of Australian reptiles from four orders (snakes, skelctal 19–36 slykes, cardiac 9–17 slykes; lizards, skeletal 25–54 slykes, cardiac 17–19 slykes; turtles, skeletal 25–43 slykes, cardiac 11–24 slykes; crocodile, skeletal 43 slykes). Although a positive correlation between pH buffering capacity and dependence on anaerobic muscle work was found, even the highest reptilian pH buffering values were low relative to equivalent white anaerobic muscles of fish, birds, and mammals. The low non-bicarbonate intracellular pH buffering capacity of reptilian muscle arises through lower contributions from proteins (10–14 slykes), non-protein histidine (7–18 slykes) and phosphate (5–15 slykes). It is concluded that while other vertebrates depend on these intracellular buffers for regulating muscle pH during anaerobic muscle work, reptiles rely less on buffering and instead may tolerate greater pH fluctuations.Abbreviations intracellular pH buffering capacity - EDTA ethylenediaminetetra-acetic acid - HPLC high performance liquid chromatography - I.D. internal diameter - LDH lactate dehydrogenase  相似文献   

2.
Cetaceans exhibit an exceptionally wide range of body mass that influence both the capacities for oxygen storage and utilization; the balance of these factors is important for defining dive limits. Furthermore, myoglobin content is a key oxygen store in the muscle as it is many times higher in marine mammals than terrestrial mammals. Yet little consideration has been given to the effects of myoglobin content or body mass on cetacean dive capacity. To determine the importance of myoglobin content and body mass on cetacean diving performance, we measured myoglobin content of the longissimus dorsi for ten odontocete (toothed whales) and one mysticete (baleen whales) species ranging in body mass from 70 to 80000 kg. The results showed that myoglobin content in cetaceans ranged from 1.81 to 5.78 g (100 g wet muscle)(-1). Myoglobin content and body mass were both positively and significantly correlated to maximum dive duration in odontocetes; this differed from the relationship for mysticetes. Overall, the combined effects of body mass and myoglobin content accounts for 50% of the variation in cetacean diving performance. While independent analysis of the odontocetes showed that body mass and myoglobin content accounts for 83% of the variation in odontocete dive capacity.  相似文献   

3.
Summary Buffering capacities (), measured in slykes (moles of base required to titrate the pH of one gram wet weight of muscle by one pH unit, over the pH range of pH 6 to pH 7) due to non-bicarbonate buffers were measured in locomotory muscles from a variety of terrestrial and marine mammals and teleost fishes (Tables 1 and 2). The highest buffering capacities were found in muscles capable of either intense, burst glycolytic function or prolonged, low-level anaerobic function. Marine mammals had higher muscle buffering capacity on the average than terrestrial mammals. Among the fishes studied, warm-bodied species had the greatest values of all animals examined (Table 2). Deep-sea fishes and shallow-living fishes with sluggish locomotory abilities had low values. Fish white muscle displayed higher buffering capacity than red muscle (Fig. 1; Table 2), in keeping with the more aerobic poise and higher capillary density of the latter type of muscle. Strong correlations were found between (1) and muscle myoglobin concentrations in the mammalian species (Table 1; Fig. 2), and (2) and muscle lactate dehydrogenase (LDH) activities in both the mammals and the fishes (Tables 1 and 2; Fig. 3). No correlation was found between and the activity of a citric acid cycle indicator enzyme, citrate synthase, in the mammalian species. While strongly correlated with buffering capacity, the amounts of myoglobin and LDH in a muscle are not the principal determinants of . The results indicate that muscle intracellular buffering capacity is especially critical in locomotory muscles which must function under conditions (burst locomotion and prolonged, low-level anaerobic function) where circulatory perfusion is inadequate to rapidly remove the acidic end-products such as lactic acid that are produced by anaerobic glycolysis. In this respect, the locomotory muscle of diving mammals and the white skeletal muscles of teleost fishes face a common acid-base regulatory problem and utilize a common biochemical strategy to resolve it.  相似文献   

4.
Intraspecific variability in body oxygen reserves, muscle buffering capacity, diving metabolic rate, and diving behavior were examined in recently captured juvenile and adult muskrats. Allometric scaling exponents for lung (b=1.04), blood (b=0.91), and total body oxygen storage capacity (b=1.09) did not differ from unity. The concentration of skeletal muscle myoglobin scaled positively with mass in 254-600-g juveniles (b=1.63) but was mass-independent in larger individuals. Scaling exponents for diving metabolic rate and calculated aerobic dive limit (ADL) were 0.74 and 0.37, respectively. Contrary to allometric predictions, we found no evidence that the diving abilities of muskrats increased with age or body size. Juveniles aged 1-2 mo exhibited similar dive times but dove more frequently than summer-caught adults. Average and cumulative dive times and dive&rcolon;surface ratios were highest for fall- and winter-caught muskrats. Total body oxygen reserves were greatest in winter, mainly due to an increase in blood oxygen storage capacity. The buffering capacity of the hind limb swimming muscles also was highest in winter-caught animals. Several behavioral indicators of dive performance, including average and maximum duration of voluntary dives, varied positively with blood hemoglobin and muscle myoglobin concentration of muskrats. However, none of the behavioral measures were strongly correlated with the total body oxygen reserves or ADLs derived for these same individuals.  相似文献   

5.
The intracellular non-bicarbonate buffering capacity of vertebrate muscle is mainly supported by the imidazole groups of histidine residues in proteins, free L-histidine in some fish species, and histidine-containing dipeptides such as carnosine, anserine, and balenine (ophidine). The proton buffering capacity markedly differs between muscle types and animal species depending on the ability for anaerobic exercise. The capacity is typically high in fast-twitch glycolytic muscles of vertebrates adapted for anaerobic performance such as burst swimming in fishes, prolonged anoxic diving in marine mammals, flight in birds, sprint running in mammalian sprinters, and hopping locomotion in some terrestrial mammals. A high correlation between buffering capacity, concentration of histidine-related compounds in muscle, and percentage of fast-twitch fibers in all vertebrates adapted for intense anaerobic performance clearly supports the idea that proton buffering is the main physiological function of histidine-related compounds.  相似文献   

6.
In aquatic ectotherms, muscle metabolic capacities are strongly influenced by exogenous factors, principally temperature and food availability. Seasonal changes in temperature lead many organisms to modify their metabolic machinery so as to maintain capacity even in "slower" cold habitats. Modifications of mitochondrial capacities are central in this response. The increases in protein-specific oxidative capacities of mitochondria during cold acclimation of temperate fishes do not occur during the evolutionary adaptation to cold in Antarctic species. Instead, Antarctic fishes tend to increase the proportion of fibre volume devoted to mitochondria, perhaps to facilitate intracellular distribution of oxygen and metabolites. Variation in energetic status can drastically modify muscle metabolic status, with glycolytic muscle changing more than oxidative muscle. This in turn impacts swimming performance. A decrease in the condition of cod leads endurance at speeds above Ucrit to drop by 70%. Sprint swimming is less affected, perhaps as it does not exhaust glycolytic muscle. We used interindividual variation in muscle metabolic capacities to identify correlates of swimming performance in stickleback and cod. Activities of cytochrome c oxidase in glycolytic muscle are a correlate of sprint swimming in stickleback (Gasterosteus aculeatus) and cod (Gadus morhua), whereas lactate dehydrogenase activities in glycolytic muscle are a correlate of cod endurance swimming. In scallops, gonadal maturation leads to virtually complete mobilisation of glycogen from muscle. This does not reduce the capacity of the scallops, Chlamys islandica and Euvola ziczac, to mount escape responses, but significantly slows their recuperation from exhaustive exercise. Muscle metabolic capacities fall in parallel with glycogen mobilisation. In the compromise between muscles' dual roles as a motor and a macromolecular reserve, a significant loss in locomotory ability occurs during gametogenesis and spawning. Reproductive fitness takes the upper hand over maintenance of performance.  相似文献   

7.
The cost of swimming is a key component in the energy budgets of marine mammals. Unfortunately, data to derive predictive allometric equations are limited, and estimates exist for only one other species of otariid. Our study measured the oxygen consumption of three juvenile Steller sea lions ( Eumetopias jubatus ) swimming in a flume tank at velocities up to 2.2 m sec−1. Minimum measured cost of transport ranged from 3.5–5.3 J kg−1 m−1, and was reached at swimming speeds of 1.7–2.1 m s−1. These cost-of-transport values are higher than those reported for other marine mammals. However, once differences in stationary metabolic rate were accounted for, the locomotor costs (LC) for the Steller sea lions were commensurate with those of other marine mammals. Locomotor costs (LC in J m−1) appeared to be directly proportional to body mass (M in kg) such that LC = 1.651M1.01. These estimates for the cost of locomotion can be incorporated into bioenergetic models and used to determine the energetic consequences of observed swimming behavior in wild marine mammals.  相似文献   

8.
The relationship between burst swimming performance and muscle metabolic capacities was examined in juvenile and adult threespine sticklebacks (Gasterosteus aculeatus). The absolute burst speed measured during startle responses increased markedly with growth of juveniles, but this positive allometry did not continue in adults. The allometry of phosphofructokinase (PFK), lactate dehydrogenase, creatine phosphokinase activities and protein concentrations was positive in juveniles and became negative in adults. The lower activities in adults may reflect the mobilization of muscle proteins for reproduction. In juveniles, absolute burst swimming and muscle glycolytic capacity show a similar allometry. However, when the influence of factors such as size and age was removed by calculating residuals from multiple regressions, variation in muscle enzyme activities in juveniles did not explain variation in their swimming capacity. In adults, interindividual variation in PFK and cytochrome C oxidase activities was correlated with variation in the burst swimming capacity. Apparently, mobilization of muscle proteins in support of reproduction may lead muscle enzyme levels to limit burst performance. Accepted: 9 November 1998  相似文献   

9.
Pinnipeds rely on muscle oxygen stores to help support aerobic diving, therefore muscle maturation may influence the behavioral ecology of young pinnipeds. To investigate the pattern of muscle development, myoglobin concentration ([Mb]) and acid buffering ability (β) was measured in ten muscles from 23 harp and 40 hooded seals of various ages. Adult [Mb] ranged from 28–97 to 35–104 mg g tissue−1 in harp and hooded seals, respectively, with values increasing from the cervical, non-swimming muscles to the main swimming muscles of the lumbar region. Neonatal and weaned pup muscles exhibited lower (~30% adult values) and less variable [Mb] across the body than adults. In contrast, adult β showed little regional variation (60–90 slykes), while high pup values (~75% adult values) indicate significant in utero development. These findings suggest that intra-uterine conditions are sufficiently hypoxic to stimulate prenatal β development, but that [Mb] development requires additional postnatal signal such as exercise, and/or growth factors. However, because of limited development in both β and [Mb] during the nursing period, pups are weaned with muscles with lower aerobic and anaerobic capacities than those of adults.  相似文献   

10.
Physiological characteristics of the blood oxygen transport system and muscle metabolism indicate a high dependence on aerobic pathways in the blue gourami, Trichogaster trichopterus. Haemoglobin concentration and haematocrit were modest and the blood oxygen affinity (P50=2.31 kPa at pH 7.4 and 28 degrees C) and its sensitivity to pH (Bohr factor, phi=-0.34) favour oxygen unloading at a relatively high oxygen pressure (PO2). The intracellular buffering capacity (44.0 slykes) and lactate dehydrogenase (LDH) activity (154.3 iu g(-1)) do not support exceptional anaerobic capabilities. Air-breathing frequency in the blue gourami is expected to increase when aquatic oxygen tensions decline. Under threat of predation, however, this behaviour must be modified at a potential cost to aerobic metabolism. We therefore tested the hypothesis that metabolic responses to predatory challenge and aquatic hypoxia are subject to behavioural modulation. Computer-generated visual stimuli consistently reduced air-breathing frequency at 19.95, 6.65 and 3.33 kPa PO2. Bi-directional rates of spontaneous activity were similarly reduced. The metabolic cost of this behaviour was estimated and positively correlated with PO2 but not with visual stimulation thus indicating down-regulation of spontaneous activity rather than breath-holding behaviour. Neither PO2 nor visual stimulation resulted in significant change to muscle lactate and ATP concentrations and confirm that aerobic breath-hold limits were maintained following behavioural modulation of metabolic demands.  相似文献   

11.
When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR?=?1.48SF?-?8.87) and bottlenose dolphins (HR?=?0.99SF?+?2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.  相似文献   

12.
Marine mammals exhibit multi-level adaptations, from cellular biochemistry to behavior, that maximize aerobic dive duration. A dive response during aerobic dives enables the efficient use of blood and muscle oxygen stores, but it is exercise modulated to maximize the aerobic dive limit at different levels of exertion. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. However, myoglobin is not homogeneously distributed in the locomotory muscles and is highest in areas that produce greater force and consume more oxygen during aerobic swimming. Muscle fibers are primarily fast and slow twitch oxidative with elevated mitochondrial volume densities and enhanced oxidative enzyme activities that are highest in areas that produce more force generation. Most of the muscle mitochondria are interfibriller and homogeneously distributed. This reduces the diffusion distance between mitochondria and helps maintain aerobic metabolism under hypoxic conditions. Mitochondrial volume densities and oxidative enzyme activities are also elevated in certain organs such as liver, kidneys, and stomach. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Most ATP production comes from aerobic fat metabolism in carnivorous marine mammals. Glucose is derived mostly from gluconeogenesis and is conserved for tissues such as red blood cells and the central nervous system. Marine mammals minimize the energetic cost of swimming and diving through body streamlining, efficient, lift-based propulsive appendages, and cost-efficient modes of locomotion that reduce drag and take advantage of changes in buoyancy with depth. Most dives are within the animal’s aerobic dive limit, which maximizes time underwater and minimizes recovery time at the surface. The result of these adaptations is increased breath-hold duration and enhanced foraging ability that maximizes energy intake and minimizes energy output while making aerobic dives to depth. These adaptations are the long, evolutionary legacy of an aquatic lifestyle that directly affects the fitness of marine mammal species for different diving abilities and environments.  相似文献   

13.
Buffering capacity of bacilli that grow at different pH ranges.   总被引:10,自引:5,他引:5       下载免费PDF全文
Cytoplasmic buffering capacities and buffering by whole cells were examined in six bacterial species: Bacillus acidocaldarius, Bacillus stearothermophilus, Escherichia coli, Bacillus subtilis, Bacillus alcalophilus, and Bacillus firmus RAB. Acid-base titrations were conducted on whole cells and cells permeabilized with Triton X-100 or n-butanol. In all of the species examined, the buffering capacity of intact cells was generally a significant proportion of the total buffering capacity, but the magnitude of the buffering capacity varied from species to species. Over the entire range of pH values from 4 to 9.5, B. subtilis exhibited a cytoplasmic buffering capacity that was much higher than that of B. stearothermophilus, B. acidocaldarius, or E. coli. The latter three species had comparable cytoplasmic buffering capacities at pH 4 to 9.5, as long as optimal conditions for cell permeabilization were employed. All of the nonalkalophiles exhibited a decrease in cytoplasmic buffering capacity as the external pH increased from pH 5 to 7. At alkaline pH values, the two thermophiles in the study had particularly low cytoplasmic buffering capacities, and the two alkalophilic bacteria had appreciably higher cytoplasmic buffering capacities than any of the other species studied. Cytoplasmic buffering capacities as high as 1,100 nmol of H+ per pH unit per mg of protein were observed in alkalophilic B. firmus RAB. Since previous studies have shown that immediate cytoplasmic alkalinization occurs upon loss of the active mechanisms for pH homeostasis in the alkalophiles, the very high buffering capacities apparently offer no global protection of internal pH. Perhaps, the high buffering capacities reflect protective mechanisms for specific macromolecules or process rather than part of the mechanisms for bulk pH homeostasis.  相似文献   

14.
This paper gives an overview of oxidative fuel metabolism in swimming fish, and known or potential modifications occurring in high-performance species are explored. Carbohydrate catabolism is the only source of ATP for sprint swimming where locomotory muscles operate as closed systems. In contrast, this substrate only plays a very minor role in prolonged swimming. Glucose fluxes have been measured in vivo in several species, but mainly at rest and with somewhat questionable methodologies. High-performance species may be able to sustain higher maximal glucose fluxes that their sedentary counterparts by: a) upregulating gluconeogenesis, b) increasing glucose transporter density or Vmax of individual transporters, c) storing larger amounts of glycogen in liver and muscle, and d) increasing muscle hexokinase activity. Even though lipids represent a much more important source of energy for sustained swimming, their fluxes have not been measured in vivo, even at rest, probably because of their diversity and complex chemistry. Except for elasmobranchs who do not possess plasma proteins for lipid transport, high-performance fish should be able to sustain high maximal lipid fluxes by: a) elevating lipolytic capacity, b) increasing rates of circulatory lipid transport through modified plasma proteins, c) augmenting intramuscular lipid reserves, and d) upregulating capacity for lipid oxidation in locomotory muscle mitochondria. The quantitative assessment of amino acid oxidation in swimming fish is a priority for future research because protein is probably a dominant metabolic fuel in most swimming fish. Finally, we predict that high-performance species should use proportionately more proteins/lipids and less carbohydrates than low-aerobic fish. Also, and similarly to endurance-adapted mammals, high-performance fish should increase their relative reliance on intramuscular fuel reserves and decrease their relative use of circulatory fuels.  相似文献   

15.
It is notoriously difficult to measure physiological parameters in cryptic free‐ranging marine mammals. However, it is critical to understand how marine mammals manage their energy expenditure and their diving behavior in environments where the predation risks are low and where survival is mainly linked to capacities to maintain physiological homeostasis and energy budget balance. Elephant seals are top marine predators that dive deeply and continuously when at sea. Using acoustic recorders deployed on two postbreeding southern elephant seals (SES) females, we developed methods to automatically estimate breathing frequency at the surface. Using this method, we found that seals took successive identical breaths at high frequency (0.29 Hz) when recovering at the surface and that breath count was strongly related to postdive surfacing time. In addition, dive depth was the main factor explaining surfacing time through the effects of dive duration and total underwater swimming effort exerted. Finally, we found that recovery does not only occur over one dive timescale, but over a multidive time scale for one individual. The way these predators manage their recovery will determine how they respond to the change in oceanic water column structure in the future.  相似文献   

16.
Based on a comparative approach using PCB isomer and congener compositions in higher animals and their food organisms, the capacity and mode of PCB metabolism in small cetaceans were studied and the following conclusions were drawn: (1) Small cetaceans can metabolize some of the lower chlorinated biphenyls and this capacity seems to be the same in all species of these animals. (2) The values of MI, an index to evaluate the capacity of PCB metabolism, showed that the metabolic capacity of small cetaceans was extremely low as compared to those of birds and terrestrial mammals. (3) The structural requirements for PCB metabolism were different in animal species, in that small cetaceans have no capacity to metabolize a group of PCBs with adjacent non-chlorinated meta and para carbons in biphenyl rings. (4) No development of PB (phenobarbital)-type enzymes, and a lower activity of MC (3-methylcholanthrene)-type enzymes were suggested in small cetaceans, which implies long-term accumulation and possible reproductive toxicity of persistent organochlorines in these animals. The present approach should provide an important insight into the physiological responses of small cetaceans to persistent toxic chemicals.  相似文献   

17.
Since divergence ∼50 Ma ago from their terrestrial ancestors, cetaceans underwent a series of adaptations such as a ∼10–20 fold increase in myoglobin (Mb) concentration in skeletal muscle, critical for increasing oxygen storage capacity and prolonging dive time. Whereas the O2-binding affinity of Mbs is not significantly different among mammals (with typical oxygenation constants of ∼0.8–1.2 µM−1), folding stabilities of cetacean Mbs are ∼2–4 kcal/mol higher than for terrestrial Mbs. Using ancestral sequence reconstruction, maximum likelihood and Bayesian tests to describe the evolution of cetacean Mbs, and experimentally calibrated computation of stability effects of mutations, we observe accelerated evolution in cetaceans and identify seven positively selected sites in Mb. Overall, these sites contribute to Mb stabilization with a conditional probability of 0.8. We observe a correlation between Mb folding stability and protein abundance, suggesting that a selection pressure for stability acts proportionally to higher expression. We also identify a major divergence event leading to the common ancestor of whales, during which major stabilization occurred. Most of the positively selected sites that occur later act against other destabilizing mutations to maintain stability across the clade, except for the shallow divers, where late stability relaxation occurs, probably due to the shorter aerobic dive limits of these species. The three main positively selected sites 66, 5, and 35 undergo changes that favor hydrophobic folding, structural integrity, and intra-helical hydrogen bonds.  相似文献   

18.
Accurate estimates of diving metabolic rate are central to assessing the energy needs of marine mammals. To circumvent some of the limitations inherent with conducting energy studies in both the wild and captivity, we measured diving oxygen consumption of two trained Steller sea lions ( Eumetopias jubatus ) in the open ocean. The animals dived to predetermined depths (5–30 m) for controlled periods of time (50–200 s). Rates of oxygen consumption were measured using open-circuit respirometry before and after each dive. Mean resting rates of oxygen consumption prior to the dives were 1.34 (±0.18) and 1.95 (±0.19) liter/min for individual sea lions. Mean rates of oxygen consumption during the dives were 0.71 (±0.24) and 1.10 (±0.39) liter/min, respectively. Overall, rates of oxygen consumption during dives were significantly lower (45% and 41%) than the corresponding rates measured before dives. These results provide the first estimates of diving oxygen consumption rate for Steller sea lions and show that this species can exhibit a marked decrease in oxygen consumption relative to surface rates while submerged. This has important consequences in the evaluation of physiological limitations associated with diving such as dive duration and subsequent interpretations of diving behavior in the wild.  相似文献   

19.
Regional endothermy, the conservation of metabolic heat by vascular countercurrent heat exchangers to elevate the temperature of the slow-twitch locomotor muscle, eyes and brain, or viscera, has evolved independently among several fish lineages, including lamnid sharks, billfishes, and tunas. All are large, active, pelagic species with high energy demands that undertake long-distance migrations and move vertically within the water column, thereby encountering a range of water temperatures. After summarizing the occurrence of endothermy among fishes, the evidence for two hypothesized advantages of endothermy in fishes, thermal niche expansion and enhancement of aerobic swimming performance, is analyzed using phylogenetic comparisons between endothermic fishes and their ectothermic relatives. Thermal niche expansion is supported by mapping endothermic characters onto phylogenies and by combining information about the thermal niche of extant species, the fossil record, and paleoceanographic conditions during the time that endothermic fishes radiated. However, it is difficult to show that endothermy was required for niche expansion, and adaptations other than endothermy are necessary for repeated diving below the thermocline. Although the convergent evolution of the ability to elevate slow-twitch, oxidative locomotor muscle temperatures suggests a selective advantage for that trait, comparisons of tunas and their ectothermic sister species (mackerels and bonitos) provide no direct support of the hypothesis that endothermy results in increased aerobic swimming speeds, slow-oxidative muscle power, or energetic efficiency. Endothermy is associated with higher standard metabolic rates, which may result from high aerobic capacities required by these high-performance fishes to conduct many aerobic activities simultaneously. A high standard metabolic rate indicates that the benefits of endothermy may be offset by significant energetic costs.  相似文献   

20.
Metabolic replacement rates (Ra) for glucose and free fatty acids (FFA) were determined during rest, exercise, and diving conditions in the gray seal using bolus injections of radiotracers. In the exercise experiments the seal swam at a metabolic rate elevated twofold over resting Ra for glucose and FFA while resting were similar to values found in terrestrial mammals and other marine mammal species. During exercise periods glucose turnover increased slightly while FFA turnover changes were variable. However, the energetic demands of exercise could not be met by the increase in the replacement rates of glucose or FFA even if both were completely oxidized. Under diving conditions the tracer pool displayed radically different specific activity curves indicative of the changes in perfusion and metabolic rate associated with a strong dive response. Since the radiotracer curves during exercise and diving differed qualitatively and quantitatively, it is possible that similar studies on freely diving animals can be used to assess the role of the diving response during underwater swimming in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号