共查询到20条相似文献,搜索用时 10 毫秒
1.
Gait transition and oxygen consumption in swimming striped surfperch Embiotoca lateralis Agassiz 总被引:2,自引:0,他引:2
M. Cannas † J. Schaefer ‡ P. Domenici § J. F. Steffensen 《Journal of fish biology》2006,69(6):1612-1625
A flow-through respirometer and swim tunnel was used to estimate the gait transition speed ( U p-c ) of striped surfperch Embiotoca lateralis , a labriform swimmer, and to investigate metabolic costs associated with gait transition. The U p-c was defined as the lowest speed at which fish decrease the use of pectoral fins significantly. While the tail was first recruited for manoeuvring at relatively low swimming speeds, the use of the tail at these low speeds [as low as 0·75 body (fork) lengths s−1 , L F s−1 ) was rare (<10% of the total time). Tail movements at these low speeds appeared to be associated with occasional slow manoeuvres rather than providing power. As speed was increased beyond U p-c , pectoral fin (PF) frequencies kept increasing when the tail was not used, while they did not when PF locomotion was aided by the tail. At these high speeds, the tail was employed for 40–50% of the time, either in addition to pectoral fins or during burst-and-coast mode. Oxygen consumption increased exponentially with swimming speeds up to gait transition, and then levelled off. Similarly, cost of transport ( C T ) decreased with increasing speed, and then levelled off near U p-c . When speeds ≥ U p-c are considered, C T is higher than the theoretical curve extrapolated for PF swimming, suggesting that PF swimming appears to be higher energetically less costly than undulatory swimming using the tail. 相似文献
2.
Aquatic propulsion generated by the pectoral fins occurs in many groups of perciform fishes, including numerous coral reef families. This study presents a detailed survey of pectoral fin musculoskeletal structure in fishes that use labriform propulsion as the primary mode of swimming over a wide range of speeds. Pectoral fin morphological diversity was surveyed in 12 species that are primarily pectoral swimmers, including members of all labroid families (Labridae, Scaridae, Cichlidae, Pomacentridae, and Embiotocidae) and five additional coral reef fish families. The anatomy of the pectoral fin musculature is described, including muscle origins, insertions, tendons, and muscle masses. Skeletal structures are also described, including fin shape, fin ray morphology, and the structure of the radials and pectoral girdle. Three novel muscle subdivisions, including subdivisions of the abductor superficialis, abductor profundus, and adductor medialis were discovered and are described here. Specific functional roles in fin control are proposed for each of the novel muscle subdivisions. Pectoral muscle masses show broad variation among species, particularly in the adductor profundus, abductor profundus, arrector dorsalis, and abductor superficialis. A previously undescribed system of intraradial ligaments was also discovered in all taxa studied. The morphology of these ligaments and functional ramifications of variation in this connective tissue system are described. Musculoskeletal patterns are interpreted in light of recent analyses of fin behavior and motor control during labriform swimming. Labriform propulsion has apparently evolved independently multiple times in coral reef fishes, providing an excellent system in which to study the evolution of pectoral fin propulsion. 相似文献
3.
Blennioid fishes show a highly differentiated pectoral fin, which they use to cling to the substrate. The lower part of the pectoralis, comprising about four to six fin rays, forms a hook-field with specific anatomical features: (1) the rim of the fin web has a saw-like appearance, because it extends from the tip of a fin ray to the shaft ofthe upper of two neighbouring fin rays, (2) the outer half of the bony fin ray carries a lepidotrichal cord composed of fibrocytes, collagen, elastic fibres and acidic GAGS, (3) the epidermis overlying the lepidotrichal cord is differentiated in terms of cyto-architecture and forms a conspicuous cuticle. The upper part of the pectoral fin does not show any obvious specializations and is used for swimming and undulation. The vascularization of the fin originates from a stem vessel which gives rise to five branches, each supplying two or three neighbouring fin rays. Each fin ray is accompanied by a single arterial vessel at its upper edge. No vessels are found in the space between the bony fin ray halves. The morphology of the shoulder girdle and pectoral fin shows only little variation among the four species of Blenniini studied. Most remarkable is the fusion of the coracoid with the cleithrum, loss of one element of the suspensorium and the absence of branched fin rays. The possible relevance of the Blennioid pectoral fin as a model for the origin of morphological novelties in connection with functional specializations is discussed. 相似文献
4.
《Chronobiology international》2013,30(1):136-142
The aim of this study was to investigate the effect of time-of-day on Preferred Transition Speed (PTS) and spatiotemporal organization of walking and running movements. Twelve active male subjects participated in the study (age: 27.2?±?4.9 years; height: 177.9?±?5.4?cm; body mass: 75.9?±?5.86?kg). First, PTS was determined at 08:00?h and 18:00?h. The mean of the two PTS recorded at the two times-of-day tested was used as a reference (PTSm). Then, subjects were asked to walk and run on a treadmill at three imposed speeds (PTSm, PTSm?+?0.3?m.s?1, and PTSm???0.3?m.s?1) at 08:00?h and 18:00?h. Mean stride length, temporal stride, spatial stride variability, and temporal stride variability were used for gait analysis. The PTS observed at 08:00?h (2.10?±?0.17?m.s?1) tends to be lower (p?=?0.077) than that recorded at 18:00?h (2.14?±?0.19?m.s?1). Stride lengths recorded while walking (p?=?0.038) and running (p?=?0.041) were shorter at 08:00?h than 18:00?h. No time-of-day effect was observed for stride frequency during walking and running trials. When walking, spatial stride variability (p?=?0.020) and temporal stride variability (p?=?0.028) were lower at 08:00?h than at 18:00?h. When running, no diurnal variation of spatial stride variability or temporal stride variability was detected. 相似文献
5.
S. J. Peake 《Journal of fish biology》2008,72(3):645-655
This study demonstrated that the transition from a steady to an unsteady locomotory gait ( U STmax ) in juvenile brook trout Salvelinus fontinalis can be measured easily using a new tilting raceway design and a simple experimental protocol. It was found that U STmax increased linearly with fork length ( L F ), and that this relationship was statistically identical in fish that swam volitionally in the raceway and those that were forced to perform, although slightly different data processing methods were needed in the latter to achieve this result. Furthermore, the relationship between L F and U STmax was statistically identical to that between L F and critical swimming speed ( U crit ), although L F in the former relationship explained 83% of the variance compared to 37% in the latter. This finding indicates that gait transition speed can be used to estimate maximum aerobic capacity, with less unexplainable variance than U crit . Gait transition speeds were also determined from U crit tests; however, this required measuring and incorporating ground speed into the analysis. U STmax as determined in the U crit tests was not significantly different from that measured in the raceway, suggesting that gait transition speed can be measured in raceways or swim tunnel respirometers. 相似文献
6.
Variation in morphology, gait characteristics and speed of locomotion in two populations of lizards 总被引:3,自引:0,他引:3
Raoul Van Damme Peter Aerts Bieke Vanhooydonck 《Biological journal of the Linnean Society. Linnean Society of London》1998,63(3):409-427
Locomotor behaviour varies between two subspecies of the Spanish wall lizard Podarcis hispanica. One subspecies inhabits the Columbretes islands, the other lives on the Spanish mainland. Size standardized voluntary speeds (as measured in unrestrained laboratory conditions) are lower in the island population (P. h. atrata) than in the mainland population (P. h. hispanica). Maximal running performance (when chased) is much higher in the mainland population than in the island population. High speed video recordings show that subspecies differ in gait characteristics: individuals from the mainland modulate running velocity primarily by modifying stride length, individuals from the island primarily by altering stride frequency. P. h. hispanica's strategy for modulating speed probably allows this mainland subspecies to attain higher maximal speeds than the island subspecies P. h. atrata. Theoretical considerations suggest that at high speeds, P. h. hispanica's running style is energetically more favourable, but this hypothesis awaits experimental verification. We suggest that the differences in locomotion efficiency between the subspecies result from differences in predation pressure between the mainland and the island. The mainland study site has a higher predator diversity and offers less hiding opportunities to the lizards. 相似文献
7.
The relationship between fish shape, swimming ability and energy consumption during swimming in fish is complex and not well understood. In this paper, we show how a self-propelled 3-D fish model can be used to examine the effect of controlled changes in some shape parameters. Parameters of the model fish are modified and the resulting fish activated for short swimming episodes during which swimming velocity, torque and energy expenditure are calculated in the computer environment. The effect of shape was determined for two different fish shapes swimming at three different tail-beat frequencies (1.43, 0.94 and 0.64?Hz). The simulation results indicate that fish model one (based on a salmon) has stronger swimming ability than fish model two (a modified salmon fish shape) even though energy expenditure of fish shape two is greater than that of fish shape one. In the same fish types, the fish-swimming velocity and energy expenditure are proportional to tail-beat frequency. This model has the potential to be useful, particularly for predicting fish behavior in fish swim ways and the tail-water of energy turbines. 相似文献
8.
Scaling migration speed in animals that run, swim and fly 总被引:1,自引:0,他引:1
Anders Hedenström 《Journal of Zoology》2003,259(2):155-160
9.
The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization 总被引:1,自引:0,他引:1
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments. 相似文献
10.
Comparable disparity in the appendicular skeleton across the fish–tetrapod transition,and the morphological gap between fish and tetrapod postcrania 下载免费PDF全文
Appendicular skeletal traits are used to quantify changes in morphological disparity and morphospace occupation across the fish–tetrapod transition and to explore the informativeness of different data partitions in phylogeny reconstruction. Anterior appendicular data yield trees that differ little from those built from the full character set, whilst posterior appendicular data result in considerable loss of phylogenetic resolution and tree branch rearrangements. Overall, there is a significant incongruence in the signals associated with pectoral and pelvic data. The appendicular skeletons of fish and tetrapods attain similar levels of morphological disparity (at least when data are rarefied at the maximum sample size for fish in our study) and occupy similarly sized regions of morphospace. However, fish appear more dispersed in morphospace than tetrapods do. All taxa show a heterogeneous distribution in morphospace, and there is a clear separation between fish and tetrapods despite the presence of several evolutionarily intermediate taxa. 相似文献
11.
Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves 总被引:11,自引:0,他引:11
I. M. Roberts P. Boevink A. G. Roberts N. Sauer C. Reichel K. J. Oparka 《Protoplasma》2001,218(1-2):31-44
Summary The sink-source transition in tobacco leaves was studied noninvasively using transgenic plants expressing the green-fluorescent protein (GFP) under control of theArabidopsis thaliana SUC2 promoter, and also by imaging transgenic plants that constitutively expressed a tobacco mosaic virus movement protein (MP) fused to GFP (MP-GFP). The sink-source transition was measured on intact leaves and progressed basipetally at rates of up to 600 m/h. The transition was most rapid on the largest sink leaves. However, leaf size was a poor indicator of the current position of the sink-source transition. A quantitative study of plasmodesmatal frequencies revealed the loss of enormous numbers of simple plasmodemata during the sink-source transition. In contrast, branched plasmodesmata increased in frequency during the sink-source transition, particularly between periclinal cell walls of the spongy mesophyll. The progression of plasmodesmal branching, as mapped by the labelling of plasmodesmata with MP-GFP fusion, occurred asynchronously in different cell layers, commencing in trichomes and appearing lastly in periclinal cell walls of the palisade layer. It appears that dividing cells retain simple plasmodesmata for longer periods than nondividing cells. The rapid conversion of simple to branched plasmodesmata is discussed in relation to the capacity for macromolecular trafficking in developing leaf tissues. 相似文献
12.
循环经济建设的生态误区、整合途径和潜势产业辨析 总被引:11,自引:1,他引:10
运用复合生态系统方法剖析了我国发展循环经济在规划、建设和管理上的各种右的和左的偏差,分析了认识上的个误区,提出了观念转型、体制改革和功能重组的循环经济建设大3R原则,探讨了产业转型的横向耦合、纵向闭合、功能导向、结构柔化、区域耦合、社会整合、能力组合、增加就业和人性化生产等9类生态整合途径,展望了当前循环经济建设中诸如化肥农药工业向农田生态系统保育业转型等10类复合型潜势生态产业. 相似文献
13.
14.
Artificial proteins potentially barrier-free in the folding kinetics are approached computationally under the guidance of protein-folding theories. The smallest and fastest folding globular protein triple-helix-bundle (THB) is so modified as to minimize or eliminate its presumed barriers in folding speed. As the barriers may reside in the ordering of either secondary or tertiary structure, the elements of both secondary and tertiary structure in the protein are targeted for prenucleation with suitable stereochemically constrained amino acid residues. The required elements of topology and sequence for the THB are optimized independently; first the topology is optimized with simulated annealing in polypeptides of highly simplified alphabet; next, the sequence in side chains is optimized using the standard inverse design methods. The resultant three best-adapted THBs, variable in topology and distinctive in sequences, are assessed by comparing them with a few benchmark proteins. The results of mainly molecular dynamics (MD) comparisons, undertaken in explicit water at different temperatures, show that the designed sequences are favorably placed against the chosen benchmarks as THB proteins potentially thermostable in the native folds. Folding simulation experiments with MD establish that the designed sequences are rapid in the folding of individual helices, but not in the evolution of tertiary structure; energetic cum topological frustrations remain but could be the artifacts of the starting conformations that were chosen in the THBs in the folding simulations. Overall, a practical high-throughput approach for de novo protein design has been developed that may have fruitful application for any type of tertiary structure. 相似文献
15.
The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury 总被引:15,自引:0,他引:15
John J. Lemasters Anna-Liisa Nieminen Ting Qian Lawrence C. Trost Brian Herman 《Molecular and cellular biochemistry》1997,174(1-2):159-165
Opening of a non-specific, high conductance permeability transition pore or megachannel in the inner mitochondrial membrane causes onset of the mitochondrial permeability transition, which is characterized by mitochondrial swelling, depolarization and uncoupling. Inducers of the permeability transition include Ca2+, oxidant stress and a permissive pH greater than 7.0. Blockers include cyclosporin A, trifluoperazine and pH < 7. Using laser scanning confocal microscopy, we developed techniques to visualize onset of the mitochondrial permeability transition in situ in living cells. In untreated cells, the permeability transition pore is continuously closed and does not 'flicker' open. By contrast, the pore opens in liver and heart cells after exposure to oxidant chemicals, calcium ionophore, hypoxia and ischemia/reperfusion, causing mitochondrial uncoupling and aggravation of ATP depletion. In injury to hepatocytes from tert-butylhydroperoxide, an analog of lipid hydroperoxides generated during oxidative stress, onset of the mitochondrial permeability transition is preceded by oxidation of mitochondrial pyridine nucleotides, mitochondrial generation of oxygen radicals and an increase of mitochondrial Ca2+, all inducers of the mitochondrial permeability transition. In ischemia, the acidosis of anaerobic metabolism protects strongly against cell death. During reperfusion, recovery of pH to normal levels is a stress that actually precipitates cell killing. Onset of the mitochondrial permeability transition may be responsible, in part, for this pH-dependent injury, or pH paradox. The mitochondrial permeability transition may also be responsible for a variety of pathological phenomena. In particular, the mitochondrial permeability transition may underlie Reye's syndrome and Reye's-like drug toxicities. In conclusion, multiple mechanisms contribute to cell injury after hypoxia, ischemia/reperfusion and toxic chemicals, but a common final pathway leading to acute cellular nec rosis may be ATP depletion after mitochondrial failure. One important mechanism causing mitochondrial failure is the mitochondrial permeability transition, which both uncouples oxidative phosphorylation and accelerates ATP hydrolysis. Interventions that block this pH-dependent phenomenon protect against onset of cell death. (Mol Cell Biochem 174: 159–165, 1997) 相似文献
16.
17.
Katarzyna Niedzwiecka Renata Tisi Sara Penna Malgorzata Lichocka Danuta Plochocka Roza Kucharczyk 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(1):117-131
The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis. 相似文献
18.
Nakagawa M Shimamoto K Kyozuka J 《The Plant journal : for cell and molecular biology》2002,29(6):743-750
TERMINAL FLOWER 1 (TFL1)/CENTRORADIALIS (CEN)-like genes play important roles in determining plant architecture, mainly by controlling the timing of phase transition. To investigate the possibility of similar mechanisms operating in the control of inflorescence architecture in rice, we analysed the functions of RCN1 and RCN2, rice TFL1/CEN homologs. Constitutive overexpression of RCN1 or RCN2 in Arabidopsis caused a late-flowering and highly branching phenotype, indicating that they possess conserved biochemical functions as TFL1. In 35S::RCN1 and 35S::RCN2 transgenic rice plants, the delay of transition to the reproductive phase was observed. The transgenic rice plants exhibited a more branched, denser panicle morphology. Detailed observation of the panicle structure revealed that the phase change from the branch shoot to the floral meristem state was also delayed, leading to the generation of higher-order panicle branches. These results suggest rice has a pathway that can respond to the overexpressed TFL1/CEN-like functions, and the molecular mechanisms controlling the phase transition of meristems are conserved between grass and dicot species, at least to some extent. 相似文献
19.
The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance 总被引:12,自引:0,他引:12
In a search for the mechanism of desiccation tolerance, a comparison was made between orthodox (desiccation-tolerant) soybean ( Glycine max [L.] Merrill) and recalcitrant (desiccation-intolerant) red oak ( Quercus rubra L.) seeds. During the maturation of soybean seeds, desiccation tolerance of seed axes is correlated with increases in sucrose, raffinose and stachyose. In cotyledons of mature oak seeds, sucrose levels are equal to those in mature soybeans, but oligosaccharides are absent. By using the thermally stimulated current method, we observed the glassy state in dry soybean seeds during maturation. Oak cotyledons showed the same phase diagram for the glass transition as did mature soybeans. By using X-ray diffraction, we found the maturation of soybeans to be associated with an increased ability of membranes to retain the liquid crystalline phase upon drying, whereas the mature oak cotyledonary tissue existed in the gel phase under similar dry conditions. These findings lead to the conclusion that the glassy state is not sufficient for desiccation tolerance, whereas the ability of membranes to retain the liquid crystalline phase does correlate with desiccation tolerance. An important role for soluble sugars in desiccation tolerance is confirmed, as well as their relevance to membrane phase changes. However, the presence of soluble sugars does not adequately explain the nature of desiccation tolerance in these seeds. 相似文献
20.
Ruksana Aziz Piyali Sen Pratyush Kumar Beura Saurav Das Debapriya Tula Madhusmita Dash Nima Dondu Namsa Ramesh Chandra Deka Edward J Feil Siddhartha Sankar Satapathy Suvendra Kumar Ray 《DNA research》2022,29(4)
A common approach to estimate the strength and direction of selection acting on protein coding sequences is to calculate the dN/dS ratio. The method to calculate dN/dS has been widely used by many researchers and many critical reviews have been made on its application after the proposition by Nei and Gojobori in 1986. However, the method is still evolving considering the non-uniform substitution rates and pretermination codons. In our study of SNPs in 586 genes across 156 Escherichia coli strains, synonymous polymorphism in 2-fold degenerate codons were higher in comparison to that in 4-fold degenerate codons, which could be attributed to the difference between transition (Ti) and transversion (Tv) substitution rates where the average rate of a transition is four times more than that of a transversion in general. We considered both the Ti/Tv ratio, and nonsense mutation in pretermination codons, to improve estimates of synonymous (S) and non-synonymous (NS) sites. The accuracy of estimating dN/dS has been improved by considering the Ti/Tv ratio and nonsense substitutions in pretermination codons. We showed that applying the modified approach based on Ti/Tv ratio and pretermination codons results in higher values of dN/dS in 29 common genes of equal reading-frames between E. coli and Salmonella enterica. This study emphasizes the robustness of amino acid composition with varying codon degeneracy, as well as the pretermination codons when calculating dN/dS values. 相似文献