首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-year-old potted peach ‘Zaojiubao’ (Prunus persica L. Batsch) trees on wild P. persica rootstock were subjected either to regulated deficit irrigation (RDI), in which trees were water stressed during fruit pit hardening (stage II) followed by rewatering during the final rapid fruit growth stage (stage III), or to half-root stress (HRS) treatments during the same two stages. To investigate the allocation of carbon assimilates among sink organs, shoots were fed with 14CO2 twice, either during stage II or stage III. The distribution coefficient (K) represented the competitive sink strength. RDI and HRS induced an altered allocation pattern of 14C-assimilates. The import to shoot apexes was reduced. However, there were no significant reduction in fruit diameter and weight. Moreover, the Ks of the fruit subparts of RDI and HRS treated trees were similar to or sometimes higher than those of CK trees. There were more 14C-assimilates and higher K values of seeds from RDI trees during stage III compared with CK. In addition, stressed roots seemed to have stronger abilities to attract 14C-assimilates. It is concluded that RDI and HRS resulted in a decreased sink activity in the shoot and a change of carbon allocation toward stressed roots and seeds without negative effects on fruit growth.  相似文献   

2.
Northern red oak in the western Lake States area of the USA exists on the most xeric edge of its distribution range. Future climate-change scenarios for this area predict decreased water availability along with increased atmospheric CO2. We examined recent photosynthate distribution and growth in seedlings as a function of CO2 mole fraction (400, 530 and 700 μmol mol−1 CO2), water regime (well watered and water-stressed), and ontogenic stage. Water stress effects on growth were largely offset by elevated CO2.
Water stress increased root mass ratio without concurrently increasing allocation of recent photosynthate to the roots. However, apparent sink strength of water-stressed seedlings at the completion of the third growth stage tended to be greater than that of well watered seedlings, as shown by continued high export, which may contribute carbon reserves to support preferential root growth under water-stressed conditions.
Elevated CO2 decreased apparent shoot sink strength associated with the rapid expansion of the third flush. Carbon resources for the observed enhanced growth under elevated CO2 could be provided by enhanced photosynthetic rate over an increased leaf area (Anderson & Tomlinson, 1998, this volume).
Increased sink strength of LG seedlings under water-stressed conditions, together with decreased apparent shoot sink strength associated with growth in elevated CO2 provide mechanisms for offsetting water stress effects by growth in elevated CO2.
Careful control of ontogeny was necessary to discern these changes and provides further evidence of the need for such careful control in mechanistic studies.  相似文献   

3.
The effect of sink strength reduction in developing seeds onvein loading of photoassimilate has been studied in Pisum sativumL. The sink strength was manipulated by means of the ‘openseed coat technique’. Sink strength of the operated ovuleswas controlled by the osmolality of a substitute medium replacingthe embryo. A high osmolality of the medium (400 mM mannitol)or a low osmolality of the medium (without mannitol) was usedto maintain a high or low sink strength, respectively. To studythe effect of sink strength reduction on vein loading, macro-autoradiographywas used. After applying 14CO2 to the source leaf for 10 to20min autoradiographs of plants with different sink strengthshowed differences in distribution of 14C-photoassimilate overthe mesophyll and the veins. Under low sink strength conditionsvein loading of 14C-photoassimilate was reduced. After longertime spans (40 to 60 min) no clear differences in vein loadingwere visible in the autoradiographs. However, measurement of14C in plant parts along the path of transport from source tosink showed a decrease of the rate of export of 14C from thesource leaf under low sink strength conditions. Apparently,accumulation of 14C-photoassimilate into the phloem and exporttowards sink regions can be reduced by lowering the sink strength.A signal must have been transferred from sink all the way tothe source regions. The mechanism of such a signal is discussed. Key words: Pisum sativum, phloem loading, photoassimilate transport, seed development, sink-source interactions  相似文献   

4.
以6年生库尔勒香梨为材料,用13C脉冲标记技术研究了150、300、450 kg N·hm-2(分别用N1、N2、N3表示)3个施氮水平下树体各器官生物量、碳积累量以及13C同化物的吸收分配特性。结果表明: 库尔勒香梨树体整株的生物量、碳积累量、13C固定量以及叶片的同化能力均随着施氮水平的提高而增加;根冠比则随施氮水平的提高而降低。生殖器官果实的生物量、碳积累量在N2处理下最高。树体各器官13C含量和分配率随施氮量的增加发生动态变化。新梢旺长期,叶片和根系对光合同化物的竞争能力较强,且13C分配率均为N1处理下最高;果实膨大期和成熟期,叶片和果实的竞争能力较强,叶片13C含量和分配率在N3处理下最高,而果实13C含量和分配率则在N2处理下最大。综上,根据不同施氮水平各器官对碳同化物的吸收分配特征,以提高产量为目标,建议6年树龄的库尔勒香梨果园最佳施氮量为300 kg·hm-2。  相似文献   

5.
Water deficit and high temperature often occur simultaneously, but their effects on plants are usually investigated separately. The aim of this study was to test how interactions between water stress and nocturnal warming affect carbon allocation in the perennial grass, Leymus chinensis . Plant biomass, dry mass allocation, 14C partitioning and carbon isotope composition (δ13C) were measured. Severe and extreme water stress during nocturnal warming decreased the allocation of dry mass and 14C partitioning below ground to the roots, but moderate water stress significantly increased the below-ground allocation of dry mass and 14C, especially at the lower night temperature. The δ13C values were more positive at day/night temperatures of 30/20°C than at 30/25°C, and greater in the roots than in the leaves. By plotting the δ13C values of the leaves against the δ13C values of the roots, the slopes of regressions were steeper at low than at high night temperature, also indicating that nocturnal warming reduces carbon allocation below ground to the roots. The results suggest that nocturnal warming may weaken acclimation during water stress in this species by regulating carbon allocation between source and sink organs.  相似文献   

6.
It is concluded that the permeability of the soybean nodule to gases is not linked to the supply of solutes or water via the phloem to the nodule. Nodule respiration and nitrogenase activity were less affected by diel variation and shading treatments than partitioning to the nodule, as assessed using a non-invasive 11C-based technique. Thus C import to the nodule was not matched to C requirement by the nodule. Transit times of tracer to, and within, the nodulated root increased under conditions of reduced photosynthetic rate. The increase in transit time was interpreted as a reduction in the flux of phloem sap. Thus the fluxes of both water and C to the nodule decreased following a reduction in photosynthetic rate. The change in partitioning of recent photosynthate to soybean roots and nodules in response to changes in photoassimilate availability was also used to assess the 'priority' of these sinks. Partitioning from the leaf to the root system was greatly decreased when photoassimilate availability was limited, indicating that root system priority is lower than that of the shoot, as reported for other systems. However, partitioning of tracer arriving in the root system between the nodulated and non-nodulated zones of the root was not affected by changes in photoassimilate availability, as caused by diel change, shading, or steaming of branch roots. Thus although nodules are sinks of high sink 'activity', they have 'priority' equal to that of other root sinks. It is suggested that there are similar phloem unloading kinetics, despite the very different metabolic destiny of the carbohydrate within the two organs.  相似文献   

7.
Single leaves on growing sunflower plants were allowed to assimilate14CO2. Gibberellic acid was applied to the same leaf or to theterminal bud or the roots, and the distribution of assimilated14C was determined at intervals of 1–96 h. Gibberellicacid had no significant effect on initial distribution of 14Cduring the period of rapid export from the leaf, but enhancedre-export from the roots after translocation from the leaf hadvirtually ceased. Most of the 14C exported from the roots accumulatedin the shoot tip. The site of application of the hormone wasof relatively minor importance. Wherever it was applied themajor effect was enhancement of movement from the roots to theshoot tip. Application to the terminal bud was most effectivein this respect. There was no evidence that gibberellic aciddirectly affected the transport system, but the data supportthe hypothesis that it increases the strength of the sink inthe shoot tip. Helianthus annuus L., sunflower, assimilate transport, gibberellic acid, phloem transport  相似文献   

8.
The growth of the shoot and roots of seedling plants of cocoa (Theobroma cacao L.) under constant glasshouse conditions showed a rhythmic cycle, with the maximum growth stages of each alternating in a regular sequence. When the growth cycle of the shoot was upset by removing all new leaves immediately after unfolding, the roots showed a high constant growth rate during this period, suggesting that normally the rapidly expanding leaves exert an inhibitory influence on the roots. Conversely removal of portions of the root delayed the production of new leaves in the shoot. The level of soluble and starch carbohydrate in the mature leaves, roots and stem declined during the period of expansion of the flush leaves, but accumulated again at the end of the leaf expansion stage. It is likely that this reserve carbohydrate was remobilised and translocated to the flush leaves during their period of expansion. A large proportion of newly formed photoassimilate, as shown by the distribution of 14C radioactivity from different source leaves, was also translocated to the young leaves during expansion. The large sink created by these leaves may cause photoassimilate and reserve carbohydrate to be diverted from the roots, thereby inhibiting root growth during the stage of leaf expansion. It is suggested that the rhythmic leaf production at the apex may control the growth cycle of the roots.  相似文献   

9.
We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink‐driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought‐induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink‐driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow.  相似文献   

10.
为明确植物水溶性化合物δ13C(δ13Cwsc)的春季物候节律性变化规律,以我国暖温带地区典型树种油松和刺槐为研究对象,测定春季物候期两树种各器官的δ13Cwsc,探究其与环境因子的相关性。结果表明: 油松和刺槐各器官的δ13Cwsc差异性显著。油松的新梢最大(-25.03‰±0.01‰),非光合作用器官比光合器官高0.83‰~1.8‰,两树种的地上部分普遍低于地下部分。随着物候节律推移,两树种采取不同的碳存储策略。油松在顶芽开放时所需碳源从近端老叶中获取;展叶始期老叶积累的光合产物不能满足新稍和根系生长所需碳,90%依赖于枝干碳储备;叶充分展开后新老叶光合机能恢复,逐渐补给枝干消耗的碳。刺槐在叶芽开放和展叶始期,枝干作为主要碳源向新生叶和根系传送;叶充分展开后具备光合固碳能力的成熟叶成为主要碳源。主成分分析发现,观测期气温、≥10 ℃积温、日照时长和太阳辐射为δ13Cwsc的主要影响因子,可解释δ13Cwsc变异的86.3%。两树种与气温、相对湿度呈显著负相关,与饱和水气压差、≥10 ℃积温和日照时长呈显著正相关。影响植物δ13Cwsc的主要环境因子随物候进程不断变化。本研究可为准确估算区域典型树种春季器官的碳分配格局、制定科学合理的区域森林经营策略提供参考。  相似文献   

11.
干旱胁迫及复水对海滨木槿光合作用和生理特性的影响   总被引:3,自引:0,他引:3  
选择2年生海滨木槿扦插苗为材料,通过自然干旱20 d而后复水(21 d),研究了其在干旱和复水过程中的光合作用和生理特性.结果表明:经过20 d的干旱胁迫,在土壤含水量仅为5.9%的情况下海滨木槿全部成活,干旱胁迫显著降低了海滨木槿的净光合速率,实测值最高仅为1.1μmol·m^-2·s^-1,最大光化学效率为对照的84.3%.可溶性蛋白和抗氧化酶同时积累,稳定细胞渗透势并清除干旱造成的脂膜过氧化物质.复水7d后光合速率升高至对照的57.3%,超氧化物歧化酶和过氧化氢酶活性随着丙二醛含量下降而下降,复水21 d后,海滨木槿抗氧化酶、可溶性蛋白和叶片相对含水量均恢复至对照水平,干旱处理总生物量虽显著降低,但根冠比显著提高.海滨木槿具有极强的耐旱能力,是适用于沿海地区景观改良和道路绿化的重要树种.  相似文献   

12.
通过测定上海市青浦区东风港百慕大、白花三叶草、高羊茅和白茅等4种典型滨岸草本植物各组织以及不同垂直深度土壤有机质δ13C值,对滨岸草地生态系统的植物-土壤碳稳定同位素特征进行了分析.结果表明: 白花三叶草、高羊茅属于C3植物,百慕大、白茅属于C4植物,其茎叶、凋落物和根系各组织间δ13C值无显著差异.C3和C4植物样带表层土壤有机质δ13C值随着土壤深度递增而呈现截然不同的变化特征,这与样带本底δ13C值以及碳稳定同位素分馏效应有关,同时还受植物根系分布深度的影响.植物输入是土壤有机碳(SOC)的最主要来源,植物有机体δ13C组成对土壤有机质δ13C值有直接影响,植物各组分δ13C值与土壤有机质δ13C值均存在极显著相关.4种草本植物样带SOC含量与δ13C值均呈极显著相关,其中,C3植物样带SOC含量与δ13C值呈线性负相关,C4植物样带SOC含量与δ13C值呈线性正相关.  相似文献   

13.
高等植物光合同化物的运输与分配   总被引:17,自引:2,他引:15  
高等植物光合同化物的运输受维管束发育状况影响较大,有时会限制产量。而同化物在各库器官间的分配主要决定于库本身的特性,它常用库强度和优先权来描述。库强度是库容量和库活力的乘积,库容量用细胞数目来度量,而库活力常用相对生长速度来度量。近年来人们也用酶少戌一来度量库活力或库强度。而库的优先权描述的是各库器官需求同化物的优先次序,种子被认为是优等权最高的库。同化物的运输分配不仅决定于植物本身源、流、库的特  相似文献   

14.
The root system of wheat seedlings ( Triticum aestivum L. SUN 9E) was pruned to two seminal roots. One of the roots was supplied with different levels of NO3, the other was deprived of N. Root respiration and the increment of C and N in roots and shoots were measured to determine the C/N ratio of the phloem sap feeding the N-deprived roots. Thus it was possible to determine translocation of N from the shoots to the roots. It was calculated that the C/N ratio of phloem sap feeding roots of plants growing at optimal and suboptimal N supply was ca 54. A supra-optimal N supply reduced, whilst shading increased, the C/N ratio of phloem sap. At optimal N supply 11% of all N transported to the shoots was retranslocated to the roots. Both a supra-optimal and a limiting N supply increased translocation of N back to the roots to 18% of the N translocated to the shoot, whilst shading of the plants decreased the proportion cycled to 7%. At the optimal N supply, 40% more N was translocated to the roots from the shoot than was incorporated by them. At a lower supply of N, 80% more N was imported from the shoots than was incorporated by these roots. It is suggested that the distribution of N between roots and shoots predominantly occurs in the shoots. The specific mass transfer rate in seminal roots was determined. The highest value was found for roots grown with an optimal N supply: 1.1 mg carbohydrate s−1 cm−2 (sieve tube) which is well within the range observed for other plant organs. Roots supplied with NO3 produced more and longer laterals than N-deprived roots. It is suggested that this is due to the effect of NO3 on import of carbon and other components transported in the mass flow with carbon.  相似文献   

15.
Tolerance and avoidance mechanisms to drought stress were studied in 6-month-old plants of Newhall orange (Citrus sinensis (L.) Osbeck) and Ellendale tangor (orange × mandarin hybrid) (Citrus sinensis (L) Osbeck × Citrus reticulata Blanco) during a drought/rewatering cycle under controlled conditions. Drought stress did not promote osmotic adjustment, while elastic adjustment (tissue elasticity increase) was noted in stressed orange and tangor plants. Both citrus plants showed a parallel decrease in leaf conductance (g1) and leaf water potential (Ψ1) under water stress. Tangor plants had a more efficient water conservative strategy than orange, based on the characteristics of canopy architecture (lower canopy area and a more closed canopy with leaves nearly vertically oriented) together with a significant decrease in cuticular transpiration rates (TRc) under stress.  相似文献   

16.
衰老是植物器官和组织发育的最后阶段, 是一个受到严格控制的高度协调过程, 其中碳水化合物浓度对衰老的影响十分显著。花花柴(Karelinia caspia)是塔克拉玛干沙漠南缘策勒绿洲的主要植物种, 为了研究花花柴在韧皮部环割后的碳水化合物变化和叶片衰老过程, 对其进行韧皮部环割, 测量叶片光合色素含量、光合速率、可溶性糖含量、淀粉含量、脱落酸(ABA)含量和叶水势。结果表明: (1)环割能够诱导花花柴叶片的衰老, 而诱导叶片衰老的主要因素有: 叶片碳水化合物的积累、叶片ABA含量的上升, 以及叶片水分状况的恶化。(2)相比于自然衰老, 环割诱导的衰老导致许多正常的生理过程受到破坏。(3)类胡萝卜素在衰老过程中主要起光保护的作用。(4)韧皮部半环割也导致花花柴各种生理指标显著下降, 表明植物无法通过增加剩余部分韧皮部筛管的运输通量而达到维持整个韧皮部运输系统顺畅的目的。  相似文献   

17.
《植物生态学报》2015,39(11):1082
AimsSenescence constitutes the final stage of a plant’s organ and tissue development, and is subject to gene control and strict regulation. Plant senescence is largely influenced by carbohydrate content and phloem girdling can induce leaf senescence. Our general objective is to study the effect of stem girdling on physiological conditions in Karelinia caspia. Specifically, we want to know the senescence processes after phloem girdling. In addition, we also want to know the possible mechanisms for the senescence processes. MethodsThree different types of girdling treatments, normal branch, semi-girdling, and full-girdling were performed on K. caspia. Twenty days after girdling, photosynthetic pigments content, photosynthetic rate, soluble sugar content, starch content, abscisic acid (ABA) content, and leaf water potential were measured.Important findings Phloem girdling can largely induce leaf senescence in K. caspia, and the reasons for leaf senescence may be as follows: girdling resulted in carbohydrate accumulation in leaf which subsequently led to “carbon feast” induced leaf senescence; girdling caused ABA accumulation in leaf and then resulted in senescence; girdling decreased water status, which may be another reason for leaf senescence. Compared with natural senescence, girdling induced senescence was a disorder and disorganized process, only a limited physiological process can be controlled by senescence related gene in the girdling induced senescence process. The most important role for carotenoids in the senescence process is to protect the photosynthetic apparatus from being damaged by excess light and reactive oxygen species. Many physiological indicators declined in the semi-girdled K. caspia leaves just like full-girdled leaves, indicating that portion (e.g. half) of the phloem cannot undertake the transport flux which was done by the whole phloem sieve.  相似文献   

18.
[Fe(TIM)(CH3CN)2](PF6)2 (1) (TIM = 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclodeca-1,3,8,10-tetraene) forms a complex with NO reversibly in CH3CN (53±1% converted to the NO complex) or 60% CH3OH/40% CH3CN (81±1% conversion). Quantitative NO complexation occurs in H2O or CH3OH solvents. The EPR spectrum of [Fe(TIM)(solvent)NO]2+ in frozen 60/40 CH3OH/CH3CN at 77 K shows a three line feature at g=2.01, 1.99 and 1.97 of an S=1/2FeNO7 ground state. The middle line exhibits a three-line N-shf coupling of 24 G indicating a six-coordinate complex with either CH3OH or CH3CN as a ligand trans to NO. In H2O [Fe(TIM)(H2O)2]2+ undergoes a slow decomposition, liberating 2,3-butanedione, as detected by 1H NMR in D2O, unless a π-acceptor axial ligand, L=CO, CH3CN or NO is present. An equilibrium of 1 in water containing CH3CN forms [Fe(TIM)(CH3CN)(H2O)]2+ which has a formation constant KCH3CN=320 M−1. In water KNOKCH3CN since NO completely displaces CH3CN. [Fe(TIM)(CH3CN)2]2+ binds either CO or NO in CH3CN with KNO/KCO=0.46, sigificantly lower than the ratio for [FeII(hemes)] of 1100 in various media. A steric influence due to bumping of β-CH2 protons of the TIM macrocycle with a bent S=1/2 nitrosyl as opposed to much lessened steric factors for the linear Fe---CO unit is proposed to explain the lower KNO/KCO ratio for the [Fe(TIM)(CH3CN)]2+ adducts of NO or CO. Estimates for formation constants with [Fe(TIM)]2+ in CH3CN of KNO=80.1 M−1 and KCO=173 M are much lower than to hemoglobin (where KNO=2.5×1010 M−1 and KCO=2.3×107) due to a reversal of steric factors and stronger π-backdonation from [FeII(heme)] than from [FeII(TIM)(CH3CN)]2+.  相似文献   

19.
植物响应缺钾胁迫的机制及提高钾利用效率的策略   总被引:4,自引:0,他引:4  
陈光 《植物学报》2017,52(1):89-101
钾是植物体内含量最大的阳离子,在植物生长发育过程的诸多生理生化反应中起关键作用。缺钾会抑制植株根系的生长,使根冠比降低;同时阻碍光合产物的合成和向韧皮部转运,导致生物量下降。因此,提高植物钾营养的吸收转运和利用效率对于作物品种改良和增产具有重要的理论和生产实践意义。该文综述了植物响应低钾的生理机制和提高植物钾利用效率的四大策略,并对改善钾营养吸收利用以提高作物产量和品质进行了讨论及展望。  相似文献   

20.
为探讨土壤碳氮比(C:N)对苹果(Malus pumila)植株生长和碳氮分配特性的影响, 采用碳氮双标记示踪技术, 以二年生平邑甜茶(Malus hupehensis)幼苗为试验材料, 研究了6个不同土壤C:N处理(T1-T6分别为4.70、9.78、14.70、19.96、25.60和28.83)下平邑甜茶的生长状况和氮素吸收、利用分配以及碳水化合物的运转特性。结果表明, 随着土壤C:N的逐渐增大, 平邑甜茶幼苗根系干重逐渐增加, 而株高、茎粗、地上部干重和植株总干重呈先增加后降低的趋势, 以T4处理最大。土壤C:N显著影响了平邑甜茶幼苗的 15N利用率, 从T1到T4处理, 植株的 15N利用率逐渐升高, T4处理(18.46%)是T1处理(10.65%)的1.73倍; 随着土壤C:N的进一步增加, 植株的 15N利用率逐渐降低, T5和T6处理分别比T4处理降低了1.59%和2.58%。土壤C:N较低的T1和T2处理, 平邑甜茶幼苗各器官从肥料中吸收分配到的 15N量对该器官全氮量的贡献率(Ndff)大小顺序为根>叶>茎, 随着土壤C:N的进一步增大, 叶片的Ndff均为最大, 其次是根, 茎最少。随着土壤C:N的增大, 叶片 15N分配率逐渐升高, 13C分配率逐渐降低; 而根系 15N分配率逐渐降低, 13C分配率逐渐升高。综合考虑植株生长和氮素利用状况, 本试验条件下适宜平邑甜茶生长的土壤C:N为21-23。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号