首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because T cell differentiation leads to an expanded repertoire of chemokine receptors, a subgroup of G protein-coupled receptors, we hypothesized that the repertoire of G proteins might be altered in parallel. We analyzed the abundance of mRNA and/or protein of six G protein α-subunits in human CD4+ and CD8+ T cell subsets from blood. Although most G protein α-subunits were similarly expressed in all subsets, the abundance of Gαo, a protein not previously described in hematopoietic cells, was much higher in memory versus naive cells. Consistent with these data, activation of naive CD4+ T cells in vitro significantly increased the abundance of Gαo in cells stimulated under nonpolarizing or TH17 (but not TH1 or TH2)-polarizing conditions. In functional studies, the use of a chimeric G protein α-subunit, Gαqo5, demonstrated that chemokine receptors could couple to Gαo-containing G proteins. We also found that Gαi1, another α-subunit not described previously in leukocytes, was expressed in naive T cells but virtually absent from memory subsets. Corresponding to their patterns of expression, siRNA-mediated knockdown of Gαo in memory (but not naive) and Gαi1 in naive (but not memory) CD4+ T cells inhibited chemokine-dependent migration. Moreover, although even in Gαo- and Gαi1-expressing cells mRNAs of these α-subunits were much less abundant than Gαi2 or Gαi3, knockdown of any of these subunits impaired chemokine receptor-mediated migration similarly. Together, our data reveal a change in the repertoire of Gαi/o subunits during T cell differentiation and suggest functional equivalence among Gαi/o subunits irrespective of their relative abundance.  相似文献   

2.
Summary A number of important experimental data do not support the widespread hypothesis that Na+-channels block is cerebroprotective, essentially because it reduces presynaptic glutamate release: (i) the inhibition of exocytosis by these compounds is not specific to glutamate; (ii) aspartate efflux produced by various stimuli was also reduced, but aspartate cannot be released by exocytosis because it is not concentrated within presynaptic vesicles; and (iii) glutamate accumulated extracellularly during ischaemic or traumatic insult to the CNS is mainly of cytosolic origin. As an alternative, we propose that use-dependent Na+-channel blockers enhance the resistance of nerve cells to insults, primarily by decreasing their energy demand, and that reduced efflux of glutamate and other compounds is aconsequence of attenuated cellular stress.  相似文献   

3.
We show that a simple network model of associative learning can reproduce three findings that arise from particular training and testing procedures in generalization experiments: the effect of (i) 'errorless learning', (ii) extinction testing on peak shift, and (iii) the central tendency effect. These findings provide a true test of the network model which was developed to account for other phenomena, and highlight the potential of neural networks to study the phenomena that depend on sequences of experiences with many stimuli. Our results suggest that at least some such phenomena, e.g. stimulus range effects, may derive from basic mechanisms of associative memory rather than from more complex memory processes.  相似文献   

4.
Homblé F 《Plant physiology》1987,84(2):433-437
The biophysical properties of voltage-dependent K+-channels of protoplasmic droplets of Chara corallina Klein ex Willd., em, R.D.W. were investigated using the tight-seal whole cell method. Two potassium currents were observed in voltage-clamp mode and they can be used to explain the transient membrane potential time course observed in current-clamp mode. The K+-channels are identified by the effect of tetraethylammonium chloride which blocks both currents. A two-state, constant dipole moment model is used to fit the voltage-conductance curve. From this model the minimum equivalent gating charge involved in the gating mechanism of K+-channels of Chara can be estimated.  相似文献   

5.
AB5 toxins are pore-forming protein complexes, which destroy eukaryotic target cells through ADP-ribosylation or N-glycosylation of intracellular enzyme complexes by A1 subunits. In this paradigm, B subunit pentamer interacts with the target-cell receptors and forms a pore in the cell membrane. Then receptor-mediated endocytosis is induced, and A subunit is translocated into the cytosol. In the present article, we propose a new model of A1 subunit translocation as a globular structure. It is based on those endosome properties that present it as a phospholipid bilayer “ball” with 3D structure as opposed to planar “unfolding-folding” 2D model. Furthermore, the proposed model accounts for membrane phospholipid physical and chemical properties and the activity of membrane-bound K+/Na+- and H+-ATPases. A subunit translocation (together with the B subunit) from the endosome to the cytosol is driven by the proton potential difference generated by H+-ATPases. This is followed by the reduction of A1-A2 disulphide bond by intracellular enzymes, and subunits B and A2 return back into the endosome, where they are destroyed by endosomal/lysosomal proteases; the membrane pore is closed. Endosome integrates into the cellular membrane (endosome recycling), and membrane-bound enzymatic complexes (ATPases and others) return back to their initial position. The proposed model of receptor-mediated endocytosis is a universal mechanism of membrane reparation and translocation of effector toxin subunits or any other pore-forming proteins into the target cell.  相似文献   

6.
A mathematical model for the excitation-contraction coupling within a functional unit (locus) of the small bowel is proposed. The model assumes that: the functional unit is an electromyogenic syncytium; its electrical activity is defined by kinetics of L- and T-type Ca2+-channels, mixed Ca2+-dependent K+-channels, potential-sensitive K+-channels and Cl-channels; the basic neural circuit, represented by the cholinergic and adrenergic neurones, provides a regulatory input to the functional unit via receptor-linked L-type Ca2+-channels; the smooth muscle syncytium of the locus is a null-dimensional contractile system. With the proposed model the dynamics of active force generation is determined entirely by the concentration of cytosolic calcium. The model describes electrical processes of the propagation of excitation along the neural circuit, chemical mechanisms of nerve-pulse transmission at the synaptic zones and the dynamics of active force generation. Numerical simulations have shown that it is capable of displaying different electrical patterns and mechanical responses of the locus. The simulated effects of: tetrodotoxin, -bungarotoxin, salts of divalent cations, inhibitors of catechol-O-methyltransferase and neuronal uptake mechanisms, and changes in the concentration of external Ca2+ on the dynamics of force generation have been analysed. The results are in good qualitative and quantitative agreement with results of experiments conducted on the visceral smooth muscle of the small bowel.  相似文献   

7.
Regulators of G protein signalling (RGS) proteins are united into a family by the presence of the RGS domain which serves as a GTPase-activating protein (GAP) for various Galpha subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate signalling of numerous G protein-coupled receptors. In addition to the RGS domains, RGS proteins contain diverse regions of various lengths that regulate intracellular localization, GAP activity or receptor selectivity of RGS proteins, often through interaction with other partners. However, it is becoming increasingly appreciated that through these non-RGS regions, RGS proteins can serve non-canonical functions distinct from inactivation of Galpha subunits. This review summarizes the data implicating RGS proteins in the (i) regulation of G protein signalling by non-canonical mechanisms, (ii) regulation of non-G protein signalling, (iii) signal transduction from receptors not coupled to G proteins, (iv) activation of mitogen-activated protein kinases, and (v) non-canonical functions in the nucleus.  相似文献   

8.
P Londei  S Altamura  E Caprini  A Martayan 《Biochimie》1991,73(12):1465-1472
Several features of translation and ribosome structure in extremely thermophilic, sulfur-dependent archaebacteria are described, including: i) a peculiar mechanism of transfer RNA-mediated 70S ribosome formation from free subunits; ii) poly(U)translation by hybrid ribosomes composed by one archaebacterial and one eucaryotic subunit; iii) ribosome assembly and homologous and heterologous RNA/protein recognition.  相似文献   

9.
Capturing the response behavior of spiking neuron models with rate-based models facilitates the investigation of neuronal networks using powerful methods for rate-based network dynamics. To this end, we investigate the responses of two widely used neuron model types, the Izhikevich and augmented multi-adapative threshold (AMAT) models, to a range of spiking inputs ranging from step responses to natural spike data. We find (i) that linear-nonlinear firing rate models fitted to test data can be used to describe the firing-rate responses of AMAT and Izhikevich spiking neuron models in many cases; (ii) that firing-rate responses are generally too complex to be captured by first-order low-pass filters but require bandpass filters instead; (iii) that linear-nonlinear models capture the response of AMAT models better than of Izhikevich models; (iv) that the wide range of response types evoked by current-injection experiments collapses to few response types when neurons are driven by stationary or sinusoidally modulated Poisson input; and (v) that AMAT and Izhikevich models show different responses to spike input despite identical responses to current injections. Together, these findings suggest that rate-based models of network dynamics may capture a wider range of neuronal response properties by incorporating second-order bandpass filters fitted to responses of spiking model neurons. These models may contribute to bringing rate-based network modeling closer to the reality of biological neuronal networks.  相似文献   

10.
《Biophysical journal》1998,74(2):816-830
A computer program was developed to allow easy derivation of steady-state velocity and binding equations for multireactant mechanisms including or without rapid equilibrium segments. Its usefulness is illustrated by deriving the rate equation of the most general sequential iso ordered ter ter mechanism of cotransport in which two Na+ ions bind first to the carrier and mirror symmetry is assumed. It is demonstrated that this mechanism cannot be easily reduced to a previously proposed six-state model of Na+-d-glucose cotransport, which also includes a number of implicit assumptions. In fact, the latter model may only be valid over a restricted range of Na+ concentrations or when assuming very strong positive cooperativity for Na+ binding to the glucose symporter within a rapid equilibrium segment. We thus propose an equivalent eight-state model in which the concept of positive cooperativity is best explained within the framework of a polymeric structure of the transport protein involving a minimum number of two transport-competent and identical subunits. This model also includes an obligatory slow isomerization step between the Na+ and glucose-binding sequences, the nature of which might reflect the presence of functionally asymmetrical subunits.  相似文献   

11.
The K(+)-channels of the surface membrane play a crucial role in the generation of electrical activity of a neuron. There is a large diversity of the K(+)-channels that depends on a great number (over 200) of genes encoding channels proteins. An evolutionary conservation of channel's proteins is determined. The K(+)-channels were found to have a great importance in the memory processes. It was shown on different model systems that K(+)-current of the surface membrane decreases during the learning. The antagonists of K(+)-channels were found to improve the learning and memory. It was revealed in electrophysiological experiments that K(+)-channels antagonists can either themselves induce a long-term synaptic potentiation or intensify the synaptic potentiation induced by a tetanization. The disfunction of K(+)-channels is believed to be an important link in the mechanisms of memory disturbances. In animal mutants with K(+)-channels disfunction, learning and memory are deficient. In behavioral experiments, the use of K(+)-channels openers make the learning worse. Amnesia caused by cerebral ischemia is explained by strong activity of K(+)-channels which not only inhibits neuronal excitement but also causes neurodegeneration. The question on the K(+)-channels involvement into pathophysiology of Alzheimer's disease is discussed. Neurotoxic peptide beta-amyloid, which is supposed to be involved into mechanisms of Alzheimer's disease, modulates K(+)-channels function. The effect of beta-amyloid depends on the subtype of K(+)-channels: A-channels are inhibited, and KDR-channels, on the contrary, become stronger. The effect of the cognitive enhancers (vinpocetine, piracetam, tacrine, linopirdine) on K(+)-current also depends on the subtype of K(+)-channels. Slow-inactivating K(+)-currents (IDR, IK(Ca), IM) are inhibited in the presence of these drugs, while fast-in-activating K(+)-current (A-current) remains unchanged or even increases.  相似文献   

12.
The major barrier responsible for the slow pace of structure determination of integral membrane proteins is the difficulty of crystallizing detergent-solubilized hydrophobic proteins, particularly hetero-oligomeric integral membrane proteins. For the latter class of multi-subunit proteins, we have encountered the following problems in addition to the ubiquitous problem of detergent compatibility: (i) instability caused by over-purification that results in delipidation; (ii) protease activity degrading exposed loops and termini of subunits of the complex that could not be inhibited; (iii) poor protein–protein contacts presumably arising from masking by the detergent micelle. Problem (i) could be ameliorated in crystallization of the cytochrome b6f complex by augmenting the delipidated complex with synthetic lipid. Problem (ii) has not been solved. Problem (iii) has been solved in other systems by the use of monoclonal antibodies (or other protein ligands) to increase the probability of protein–protein contacts. In the case of the complex formed by the cobalamin and colicin receptor, BtuB, and the receptor binding domain of colicin E3, the latter served as a ligand for protein–protein contacts that facilitated crystallization.  相似文献   

13.
Oxygenic photosynthesis produces various radicals and activeoxygen species with harmful effects on photosystem II (PSII).Such photodamage occurs at all light intensities. Damaged PSIIcentres, however, do not usually accumulate in the thylakoidmembrane due to a rapid and efficient repair mechanism. Theexcellent design of PSII gives protection to most of the proteincomponents and the damage is most often targeted only to thereaction centre D1 protein. Repair of PSII via turnover of thedamaged protein subunits is a complex process involving (i)highly regulated reversible phosphorylation of several PSIIcore subunits, (ii) monomerization and migration of the PSIIcore from the grana to the stroma lamellae, (iii) partial disassemblyof the PSII core monomer, (iv) highly specific proteolysis ofthe damaged proteins, and finally (v) a multi-step replacementof the damaged proteins with de novo synthesized copies followedby (vi) the reassembly, dimerization, and photoactivation ofthe PSII complexes. These processes will shortly be reviewedpaying particular attention to the damage, turnover, and assemblyof the PSII complex in grana and stroma thylakoids during thephotoinhibition–repair cycle of PSII. Moreover, a two-dimensionalBlue-native gel map of thylakoid membrane protein complexes,and their modification in the grana and stroma lamellae duringa high-light treatment, is presented. Key words: Arabidopsis thylakoid membrane proteome, assembly of photosystem II, D1 protein, light stress, photosystem II photoinhibition, repair of photosystem II  相似文献   

14.
15.
Epithelial Na+ channels facilitate the transport of Na+ across high resistance epithelia. Proteolytic cleavage has an important role in regulating the activity of these channels by increasing their open probability. Specific proteases have been shown to activate epithelial Na+ channels by cleaving channel subunits at defined sites within their extracellular domains. This minireview addresses the mechanisms by which proteases activate this channel and the question of why proteolysis has evolved as a mechanism of channel activation.Many ion channels are silent at rest and are activated in response to a variety of factors, including membrane potential, external ligands, and intracellular signaling processes. The ENaC2 has evolved as a channel that is thought to reside primarily in an active state, facilitating the bulk movement of Na+ out of renal tubular or airway lumens. The regulated insertion and retrieval of channels at the plasma membrane have important roles in modulating ENaC-dependent Na+ transport (1). A number of factors also have a role in regulating ENaC activity via changes in channel Po or gating. In this regard, it has become increasingly apparent that proteolysis of ENaC subunits has a key role in this process (2). This minireview addresses several questions regarding the role of ENaC subunit proteolysis in regulating channel gating. (i) Where are ENaC subunits cleaved? (ii) Which proteases mediate ENaC cleavage? (iii) Why are channels activated by proteolysis? (iv) Is proteolysis responsible, in part, for the highly variable channel Po that has been noted for ENaC? (v) Why have ENaCs evolved as channels that require proteolysis for activation?  相似文献   

16.
Using solid-phase `Sandwich' immunoassays we studied DNA-dependent RNA polymerase of spinach chloroplasts with regard to (i) polypeptide composition of the multimeric enzyme; (ii) immunological cross-reaction with Escherichia coli RNA polymerase; (iii) sites of synthesis of polymerase polypeptides. Our main results are as follows. (i) All polypeptides of isolated chloroplast RNA polymerase (150, 145, 110, 102, 80, 75 and 38 kd) are labeled by an antibody-linked polymerase assay (ALPA), i.e., they are immunologically related to subunits of the holoenzyme. On the other hand differences in the patterns of `ALPA-reactive' polypeptides of a crude RNA polymerase fraction and of the purified enzyme preparation indicate partial proteolytic degradation of polymerase polypeptides during purification. Thus the 80- and 75-kd polypeptides, which had been previously considered as true RNA polymerase polypeptides, probably result from partial proteolytic degradation. (ii) The 150- and 145-kd polypeptides show immunochemical similarities with the β and/orβ' subunits of E. coli RNA polymerase. (iii) Results from solidphase immunoassay of in vitro translated products of both chloroplast RNA and poly(A)+ (nuclear) RNA suggest that all chloroplast RNA polymerase polypeptides are coded for by the nucleus.  相似文献   

17.
Salt modulation of the tonoplast H+-pumping V-ATPase and H+-PPase was evaluated in hypocotyls ofVigna unguiculata seedlings after 3 and 7 days of treatment. In 3-day-old seedlings, treatment with 100 mmol/L NaCl decreased the proton transport and hydrolytic activities of both the V-ATPase and the H+-PPase. After 7 days, the proton transport and hydrolysis activities of the V-ATPase were higher, while the H+-PPase activities were lower in seedlings. Western blot analysis of A- and B-subunits of V-ATPase revealed that the protein content of the two subunits varied in parallel with their activities, i.e. to a higher activity corresponded a higher protein content of the subunits and vice versa. Contrarily, Western blot analysis of H+-PPase levels failed to show any correlation with PPase activity, suggesting a partial enzyme inactivation. The results indicate that salt stress induces V-ATPase expression inV. unguiculata with concomitant enhancement of its activity as a homeostatic mechanism to cope with salt stress. Under the same conditions PPase is inhibited.  相似文献   

18.
19.
The TIM10 chaperone facilitates the insertion of hydrophobic proteins at the mitochondrial inner membrane. Here we report the novel molecular mechanism of TIM10 assembly. This process crucially depends on oxidative folding in mitochondria and involves: (i) import of the subunits in a Cys-reduced and unfolded state; (ii) folding to an assembly-competent structure maintained by intramolecular disulfide bonding of their four conserved cysteines; and (iii) assembly of the oxidized zinc-devoid subunits to the functional complex. We show that intramolecular disulfide bonding occurs in vivo, whereas intermolecular disulfides observed in vitro are abortive intermediates in the assembly pathway. This novel mechanism of compartment-specific redox-regulated assembly is crucial for the formation of a functional TIM10 chaperone.  相似文献   

20.
Ion conduction in K+-channels is usually described in terms of concerted movements of K+ progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K+-channels are known to be highly selective for K+ over Na+, some K+ channels conduct Na+ in the absence of K+. Other ions are known to permeate K+-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K+-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb+ translocation show at atomic level why experimental Rb+ conductance is slightly lower than that of K+. In contrast to K+ or Rb+, external Na+ block K+ currents, and the sites where Na+ transport is hindered are characterized. Translocation of K+/Na+ mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na+, excluding Na+ from a channel already loaded with K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号