首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P J Spooner  A Watts 《Biochemistry》1991,30(16):3871-3879
Deuterium NMR has been used to investigate the structure and dynamic state of cytochrome c complexed with bilayers of cardiolipin. Reductive methylation was employed to prepare [N epsilon, N epsilon-C2H3]lysyl cytochrome c, and deuterium exchange provided labeling of backbone sites to give [amide-2H]cytochrome c or more selective labeling of just histidine residues in [epsilon-2H]histidine cytochrome c. Deuterium NMR measurements on [N epsilon, N epsilon-C2H3]lysyl cytochrome c in the solid state showed restricted motions, fairly typical of the behavior of aliphatic side-chain sites in proteins. The [amide-2H]cytochrome c provided "immobile" amide spectra showing that only the most stable backbone sites remained labeled in this derivative. Relaxation measurements on the aqueous solution of [amide-2H]cytochrome c yielded a rotational correlation time of 7.9 ns for the protein, equivalent to a hydrodynamic diameter of 4.0 nm, just 0.6 nm greater than its largest crystallographic dimension. Similar measurements on [epsilon-2H]histidine cytochrome c in solution showed that all labeled histidine residues were also "immobile" compared with the overall reorientational motion of the protein. The interaction with cardiolipin bilayers appeared to create a high degree of mobility for the side-chain sites of [N epsilon, N epsilon-C2H3]lysyl cytochrome c and perturbed backbone structure to instantaneously release all deuterons in [amide-2H]cytochrome c. The [epsilon-2H]histidine cytochrome c derivative, when complexed with cardiolipin, failed to produce any detectable wide-line 2H NMR spectrum, demonstrating that the overall reorientational motion of bound protein was not isotropic on the NMR time scale, i.e., tau c greater than 10(-7)s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
ThepH-titration and dynamic behaviour of the seven lysine side chains in bovine calmodulin were studied by carbon-13 NMR. The amino groups of the calcium saturated protein and its proteolytic fragments TR1C(1–75) and TR2C (78–148) were dimethylated with carbon-13 labeled formaldehyde; this modification did not alter the protein's structure or its ability to activate the enzyme cyclic nucleotide phosphodiesterase. Tentative assignments for 5 out of the 7 dimethyl lysine resonances could be obtained by comparing spectra of the fully and partially modified protein, with those of the proteolytic fragments. ThepKa values measured for calcium saturated calmodulin ranged between 9.5 (Lys 75) and 10.2 (Lys 13); two residues (Lys 94 and Lys 13) showed a biphasic titration curve suggesting their possible involvement in ion-pairs. The dynamic behavior of the lysine side chains was deduced from spin lattice relaxation measurements. All side chains were flexible and this was not influenced by the removal of calcium, or the addition of the calmodulin antagonist trifluoperazine. The latter data suggest that the lysine side chains are not directly involved in calmodulin's target binding sites.  相似文献   

3.
Lysine residues outside of the NADH-binding site in the soluble catalytic fragment of cytochrome b5 reductase were modified with ethyl acetimidate and acetic anhydride while the binding site was protected by formation of the stable oxidized nucleotide-reduced flavoprotein complex. This treatment had a minimal effect on enzyme activity; the turnover number with potassium ferricyanide was 45,300 in the native reductase and 39,200 in the derivative. Subsequent reaction with [3H]acetic anhydride after the removal of NADH resulted in the loss of 91% of the enzyme activity and the incorporation of 1.9 eq of acetyl groups into the protein. Treatment with 1 M hydroxylamine at pH 13 indicated that only lysine residues were acetylated, and fragmentation of the derivative with cyanogen bromide and subfragmentation with trypsin and chymotrypsin demonstrated that only Lys110 was labeled at high specific activity, with a stoichiometry of 0.83 acetyl groups/mol, in good agreement with the loss of enzyme activity observed. The remaining label was distributed at low levels among four or more additional lysine residues. These results demonstrate that only Lys110 is specifically protected by NADH and is therefore the residue which provides the epsilon-amino group implicated in NADH binding in cytochrome b5 reductase.  相似文献   

4.
The 270-MHz proton NMR spectra of erabutoxins a, b and c from Laticauda semifasciata in 2H2O solution were observed together with [15-N6-acetyllysine]erabutoxin b, [27-N6-acetyllysine]-erabutoxin b and [47-N6-acetyllysine]erabutoxin b. The lysine epsilon-methylene proton resonances of erabutoxin b are assigned to individual residues. The epsilon-methylene proton resonance of Lys-27 is significantly broad, indicating that the mobility of this residue is restricted. Upon acetylation of Lys-27 of erabutoxin b, the pKa values of three other lysine residues are lowered by about 0.2, indicating long-range interactions among lysine residues. All the methyl proton resonances are assigned to amino acid types, primarily by the spin-echo double-resonance method. The pH dependences of proton chemical shifts were analyzed by the nonlinear least-square method, for obtaining pKa values and protonation shifts. The interproton nuclear Overhauser effect enhancements were measured for elucidating the spatial proximity of methyl-bearing residues and aromatic residues. On the basis of these NMR data and with the crystal structures by Low et al. and by Petsko et al., the methyl proton resonances of all the valine, leucine, and isoleucine residues and Thr-45 have been identified. The microenvironments of Tyr-25, His-26, Trp-29, four lysines and eight methyl-bearing residues have been elucidated. The addition of the paramagnetic hexacyanochromate ion causes broadening of the proton resonances of Thr-45, Lys-47, Ile-50, Trp-29 and Ile-36 residues located on one end of the molecule of erabutoxin b. The positively charged invariant residues of Lys-47 and Arg-33 at this part of the molecule are probably involved in the binding to the receptor protein.  相似文献   

5.
The structure of troponin-C2 has been studied by measuring the relative reactivity of lysines with acetic anhydride using a competitive labeling method. Troponin-C was acetylated free and complexed with troponin-I and -T in the native state with [3H]acetic anhydride and combined with [14C]troponin-C that had been acetylated in 6 m-guanidine · HCl. Peptides containing labeled lysines were isolated following chymotryptic and tryptic digestion and identified in the published sequence. The 3H14C ratio of these peptides was used as a measure of relative accessibility of the lysines. Troponin-C contains 9 lysine residues. In free troponin-C Lys20 was the least reactive and Lys153 was the most reactive; the remaining 7 had intermediate reactivities. Lys52 was more reactive in the presence of 10?5m-Ca2+ than in 0.2 mm-EGTA (+2 mm-MgCl2). When troponin-C was labeled in the native troponin complex, Lys20 and 153 were the least and most reactive, respectively. Peptides containing Lys52, (84, 88, 90) and (136, 140) were reduced in reactivity relative to Lys37 and 153, suggesting that these regions are involved in binding to the other troponin components. The reactivities of Lys37 and (136, 140) were influenced by the calcium ion concentration. A similar pattern of reactivities was seen when troponin-C was complexed with troponin-I and complex formation with troponin-T resulted in reduced reactivity of Lys52 and (84, 88, 90). The results are related to structural studies of troponin-C and to the predicted three-dimensional structure based on carp parvalbumin.  相似文献   

6.
The arginine and lysine residues of calf thymus histone H1 were modified with large molar excesses of 2,3-butanedione and O-methylisourea, respectively. Kinetic study of the modification reaction of the arginine residue revealed that the reaction is divided into the two pseudo-first-order processes. About a third (1 Arg) of the total arginine residues of the H1 molecule was rapidly modified without causing any detectable structural change of the molecule, and the slow modification of the remaining arginine residues (2 Arg) led to a loss of the folded structure of H1. In the case of lysine residue modification, 93% (56 Lys) of the total lysine residues of the H1 was modified with the same rate constant, while 7% (4 Lys) of lysine residue remained unmodified. When the reaction was performed in the presence of 6M guanidine-HCl, all of lysine residues were modified. It is concluded that the 2 arginine and 4 lysine residues resistant to modification are buried in interior regions of the H1 molecule and play an important role in the formation of the H1 globular structure, while the other 1 arginine and 56 lysine residues are exposed to solvent.  相似文献   

7.
A competitive labeling method that measures the relative reactivity of lysines was used to study the structure of troponin-I. Troponin-I was acetylated free and complexed with troponin-C and troponin-T in the native state with [3H]acetic anhydride. The [3H]troponin-I was combined with [14C]troponin-I that had been acetylated in 6 M guanidine HCl and completely chemically labeled. Peptides containing labeled lysines were isolated following digestion with trypsin and Staphylococcus aureus protease and identified in the published sequence. The 3H/14C ratio of these peptides was used as a measure of the relative reactivity of the lysines. Troponin-I contains 24 lysines; we have identified 23 of these in 16 peptides. When troponin-I is labeled in a native complex, the lysines in the region from residues 40 to 98 are influenced: five become relatively less reactive (40, 65, 70, 78, and 90) and three become relatively more reactive (84, 87), and 98). All of these changes except Lys 70 can be seen when troponin-I binds to troponin-T. Lys 70 is reduced in reactivity when it binds to troponin-C. The lysines that appear to be important in binding of troponin-I to troponin-T are influenced by the binding of Ca2+ to troponin-C in the native troponin complex (in the presence of 2 mM MgCl2), suggesting for the first time that the troponin-IT interaction is affected by Ca2+.  相似文献   

8.
Boxrud PD  Bock PE 《Biochemistry》2000,39(45):13974-13981
Binding of streptokinase (SK) to plasminogen (Pg) activates the zymogen conformationally and initiates its conversion into the fibrinolytic proteinase, plasmin (Pm). Equilibrium binding studies of SK interactions with a homologous series of catalytic site-labeled fluorescent Pg and Pm analogues were performed to resolve the contributions of lysine binding site interactions, associated changes between extended and compact conformations of Pg, and activation of the proteinase domain to the affinity for SK. SK bound to fluorescein-labeled [Glu]Pg(1) and [Lys]Pg(1) with dissociation constants of 624 +/- 112 and 38 +/- 5 nM, respectively, whereas labeled [Lys]Pm(1) bound with a 57000-fold tighter dissociation constant of 11 +/- 2 pM. Saturation of lysine binding sites with 6-aminohexanoic acid had no effect on SK binding to labeled [Glu]Pg(1), but weakened binding to labeled [Lys]Pg(1) and [Lys]Pm(1) 31- and 20-fold, respectively. At low Cl(-) concentrations, where [Glu]Pg assumes the extended conformation without occupation of lysine binding sites, a 23-fold increase in the affinity of SK for labeled [Glu]Pg(1) was observed, which was quantitatively accounted for by expression of new lysine binding site interactions. The results support the conclusion that the SK affinity for the fluorescent Pg and Pm analogues is enhanced 13-16-fold by conversion of labeled [Glu]Pg to the extended conformation of the [Lys]Pg derivative as a result of lysine binding site interactions, and is enhanced 3100-3500-fold further by the increased affinity of SK for the activated proteinase domain. The results imply that binding of SK to [Glu]Pg results in transition of [Glu]Pg to an extended conformation in an early event in the SK activation mechanism.  相似文献   

9.
Samples of staphylococcal nuclease H124L (cloned protein overproduced in Escherichia coli whose sequence is identical with that of the nuclease isolated from the V8 strain of Staphylococcus aureus) were labeled uniformly with carbon-13 (26% ul 13C), uniformly with nitrogen-15 (95% ul 15N), and specifically by incorporating nitrogen-15-labeled leucine ([98% 15N]Leu) or carbon-13-labeled lysine ([26% ul 13C]Lys), arginine ([26% ul 13C]Arg), or methionine ([26% ul 13C]Met). Solutions of the ternary complexes of these analogues (nuclease H124L-pdTp-Ca2+) at pH 5.1 (H2O) or pH* 5.5 (2H2O) at 45 degrees C were analyzed as appropriate to the labeling pattern by multinuclear two-dimensional (2D) NMR experiments at spectrometer fields of 14.09 and 11.74 T: 1H-13C single-bond correlation (1H[13C]SBC); 1H-13C single-bond correlation with NOE relay (1H[13C]SBC-NOE); 1H-13C single-bond correlation with Hartmann-Hahn relay (1H-[13C]SBC-HH); 1H-13C multiple-bond correlation (1H[13C]MBC); 1H-15N single-bond correlation (1H-[15N]SBC); 1H-15N single-bond correlation with NOE relay (1H[15N]SBC-NOE). The results have assisted in spin system assignments and in identification of secondary structural elements. Nuclear Overhauser enhancements (NOE's) characteristic of antiparallel beta-sheet (d alpha alpha NOE's) were observed in the 1H [13C]-SBC-NOE spectrum of the nuclease ternary complex labeled uniformly with 13C. NOE's characteristic of alpha-helix (dNN NOE's) were observed in the 1H[15N]SBC-NOE spectrum of the complex prepared from protein labeled uniformly with 15N. The assignments obtained from these multinuclear NMR studies have confirmed and extended assignments based on 1H[1H] 2D NMR experiments [Wang, J., LeMaster, D. M., & Markley, J. L. (1990) Biochemistry (preceding paper in this issue)].  相似文献   

10.
Cytochrome c3 isolated from a sulfate-reducing bacterium, Desulfovibrio vulgaris Miyazaki F, is a tetraheme protein. Its physiological partner, [NiFe] hydrogenase, catalyzes the reversible oxidoreduction of molecular hydrogen. To elucidate the mechanism of electron transfer between cytochrome c3 and [NiFe] hydrogenase, the transient complex formation by these proteins was investigated by means of NMR. All NH signals of uniformly 15N-labeled ferric cytochrome c3 except N-terminus, Pro, and Gly73 were assigned. 1H-15N HSQC spectra were recorded for 15N-labeled ferric and ferrous cytochrome c3, in the absence and presence of hydrogenase. Chemical shift perturbations were observed in the region around heme 4 in both oxidation states. Additionally, the region between hemes 1 and 3 in ferrous cytochrome c3 was affected in the presence of hydrogenase, suggesting that the mode of interaction is different in each redox state. Heme 3 is probably the electron gate for ferrous cytochrome c3. To investigate the transient complex of cytochrome c3 and hydrogenase in detail, modeling of the complex was performed for the oxidized proteins using a docking program, ZDOCK 2.3, and NMR data. Furthermore, the roles of lysine residues of cytochrome c3 in the interaction with hydrogenase were investigated by site-directed mutagenesis. When the lysine residues around heme 4 were replaced by an uncharged residue, methionine, one by one, the Km of the electron-transfer kinetics increased. The results showed that the positive charges of Lys60, Lys72, Lys95, and Lys101 around heme 4 are important for formation of the transient complex with [NiFe] hydrogenase in the initial stage of the cytochrome c3 reduction. This finding is consistent with the most possible structure of the transient complex obtained by modeling.  相似文献   

11.
The determinants of binding of a peptide lacking C-termini-exposed lysine residues to a kringle domain were investigated using an up-regulated lysine binding kringle (K2Pg[C4G/E56D/K72Y]) of plasminogen and a peptide (a1-PAM) with a sequence derived from a surface-exposed M-like streptococcal protein. Significant kringle-induced chemical shifts in a His side-chain of a1-PAM were revealed by two-dimensional NMR. Further studies using isothermal titration calorimetry (ITC) provided support for the involvement of His12 in the peptide/ protein complex. In an effort to screen a1-PAM-derived truncation peptides, a combinatorial mixture, a1deltaa2-PAM[H12X] (where X=Pro, Arg, His, Trp, Lys, Ala, Phe, Asp and Gly), was analyzed using the surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI) platform. The major peptide that remained bound to the surface of the K2Pg[C4G/ E56D/K72Y]-containing chip was that containing His12, corresponding to the wild-type sequence. Minor peaks, representing binding, were obtained for Lys12-, Arg12- and Trp12-containing peptides. Individual peptides containing these amino acids were then examined using ITC and the binding constants obtained correlated with the relative strengths of binding estimated from the SELDI-based screen.  相似文献   

12.
B S Gibbs  S J Benkovic 《Biochemistry》1991,30(27):6795-6802
A pterin analogue, 5-[(3-azido-6-nitrobenzylidene)amino]-2,6-diamino-4-pyrimidinone (ANBADP), was synthesized as a probe of the pterin binding site of phenylalanine hydroxylase. The photoaffinity label has been found to be a competitive inhibitor of the enzyme with respect to 6,7-dimethyltetrahydropterin, having a Ki of 8.8 +/- 1.1 microM. The irreversible labeling of phenylalanine hydroxylase by the photoaffinity label upon irradiation is both concentration and time dependent. Phenylalanine hydroxylase is covalently labeled with a stoichiometry of 0.87 +/- 0.08 mol of label/enzyme subunit. 5-Deaza-6-methyltetrahydropterin protects against inactivation and both 5-deaza-6-methyltetrahydropterin and 6-methyltetrahydropterin protect against covalent labeling, indicating that labeling occurs at the pterin binding site. Three tryptic peptides were isolated from [3H]ANBADP-photolabeled enzyme and sequenced. All peptides indicated the sequence Thr-Leu-Lys-Ala-Leu-Tyr-Lys (residues 192-198). The residues labeled with [3H]ANBADP were Lys198 and Lys194, with the majority of the radioactivity being associated with Lys198. The reactive sulfhydryl of phenylalanine hydroxylase associated with activation of the enzyme was also identified by labeling with the chromophoric label 5-(iodoacetamido)fluorescein [Parniak, M. A., & Kaufman, S. (1981) J. Biol. Chem. 256, 6876]. Labeling of the enzyme resulted in 1 mol of fluorescein bound per phenylalanine hydroxylase subunit and a concomitant activation of phenylalanine hydroxylase to 82% of the activity found with phenylalanine-activated enzyme. Tryptic and chymotryptic peptides were isolated from fluorescein-labeled enzyme and sequenced. The modified residue was identified as Cys236.  相似文献   

13.
M Ikura  L E Kay  A Bax 《Biochemistry》1990,29(19):4659-4667
A novel approach is described for obtaining sequential assignment of the backbone 1H, 13C, and 15N resonances of larger proteins. The approach is demonstrated for the protein calmodulin (16.7 kDa), uniformly (approximately 95%) labeled with 15N and 13C. Sequential assignment of the backbone residues by standard methods was not possible because of the very narrow chemical shift distribution range of both NH and C alpha H protons in this largely alpha-helical protein. We demonstrate that the combined use of four new types of heteronuclear 3D NMR spectra together with the previously described HOHAHA-HMQC 3D experiment [Marion, D., et al. (1989) Biochemistry 28, 6150-6156] can provide unambiguous sequential assignment of protein backbone resonances. Sequential connectivity is derived from one-bond J couplings and the procedure is therefore independent of the backbone conformation. All the new 3D NMR experiments use 1H detection and rely on multiple-step magnetization transfers via well-resolved one-bond J couplings, offering high sensitivity and requiring a total of only 9 days for the recording of all five 3D spectra. Because the combination of 3D spectra offers at least two and often three independent pathways for determining sequential connectivity, the new assignment procedure is easily automated. Complete assignments are reported for the proton, carbon, and nitrogen backbone resonances of calmodulin, complexed with calcium.  相似文献   

14.
G E Jackson  N M Young 《Biochemistry》1986,25(7):1657-1662
A selective peptide-mapping procedure was devised to purify peptides containing histidine or tyrosine residues from proteolytic digests of concanavalin A (Con A). The protein was modified with maleic anhydride followed by 1-fluoro-2,4-dinitrobenzene (Dnp-F) and then digested with thermolysin. The resulting labeled peptides were separated by high-performance liquid chromatography, and the Dnp-histidine and Dnp-tyrosine peptides were identified by their spectral characteristics. From their amino acid compositions, the labeled peptides could all be assigned within the known sequence. Peptides representing five of the six histidines and all seven tyrosines were obtained. With the same peptide-mapping procedure, the chemical properties (pK and reactivity) of these residues were determined. Samples of concanavalin A at various pH values were labeled with trace amounts of [3H]Dnp-F, in the presence of Gln-Gly as an internal standard. To each sample was added an aliquot of a mixture of [14C]Dnp-Gln-Gly and [14C]Dnp-maleyl-Con A. Portions of each sample were removed, [14C]Dnp-Ala-Ala and epsilon-[14C]Dnp-lysine were added, and the mixtures were hydrolyzed. The various Dnp amino acid derivatives were purified by HPLC. The remainder of each [3H]Dnp sample was maleylated, dinitrophenylated, and digested with thermolysin and separated by HPLC as above. From the 3H/14C ratios of the Dnp amino acid derivatives and the Dnp peptides relative to the ratio of the internal standard, pK and reactivity data were obtained for (a) the average behavior of the lysine, histidine, and tyrosine residues and (b) the individual behavior of the N-terminal alanine residue and the five histidine and seven tyrosine residues in the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
D E Ehmann  A M Gehring  C T Walsh 《Biochemistry》1999,38(19):6171-6177
A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser880 of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a Km of 1 microM and kcat of 3 min-1 for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (kcat/Km = 840 mM-1 min-1) at 16% the efficiency of L-alpha-aminoadipate in [32P]PPi/ATP exchange assays. The holo form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated itself with [35S]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.  相似文献   

16.
We have directly assigned the 1H NMR corresponding to the cysteinyl protons, the slowly exchangeable protons, and the aromatic ring protons in the 1H NMR spectrum of Clostridium acidi-urici ferredoxin by isotopic labeling and 13C NMR decoupling techniques. We also show that the resonance pattern in the 8- to 20-ppm (from 2,2-dimethyl-2-sialapentanesulfonic acid) region of the 1H NMR spectra of oxidized Clostridium acidi-urici, Clostridium pasteurianum, Clostridium perfringens, and Peptococcus aerogenes ferredoxins are very similar, and we assign the resonances in this region by analogy with the spectrum of C. acidi-urici ferredoxin. The 1H NMR spectra of the beta protons of the cysteinyl residues of these ferredoxins differ, however, from the 1H NMR spectra of equivalent beta protons of the methylene carbon atoms bonded via a sulfur atom to [4Fe-4S] clusters in synthetic inorganic analogues. In the spectra of the synthetic compounds, the beta protons appear as a single resonance shifted 10 ppm from its unbonded reference position. In the spectra of oxidized clostridial ferredoxins, the cysteinyl beta protons appear as a series of at least eight resolved resonances with shifts that range from 6 to 14 ppm, relative to the free amino acid resonance position. This difference in the spectra of the protein and the synthetic compounds probably results from the fact that the equivalent beta protons of the synthetic compounds are not constrained and are free to rotate and thus assume the same average orientation with respect to the [4Fe-4S] cluster. The shift pattern in the 9- to 14-ppm region is identical in three different clostridial ferredoxins. This suggests that the molecular environments of the corresponding cysteinyl residues are identical. Significant differences in the resonance positions occur, however, in the 14- to 18-ppm region, suggesting that the physical environments of these cysteinyl residues differ. This may reflect differences in the orientation of the corresponding cysteinyl residues relative to the [4Fe-4S] clusters or differences in charge density at the cysteinyl beta protons or both. The slowly exchangeable protons were identified by comparing the 1H NMR spectra of ferredoxins reconstituted in H2O and 2H2O. The remaining resonances in the 8- to 20-ppm region were assigned to each of the 2 tyrosyl residues in C. acidi-urici ferredoxin. This was done by comparing the 1H NMR spectra of C. acidi-urici [(3',5'-2H2)Tyr]ferredoxin and C. acidi-urici [PHE2]ferredoxin with that of C. acidi-urici native ferredoxin.  相似文献   

17.
The Lys residues in the 75-residue Ca2+-binding protein calbindin D9k were reductively methylated with13C-enriched formaldehyde. The possible structural effects resulting from the chemical modification were critically investigated by comparing two-dimensional NMR spectra and the exchange rates of some of the amide protons of the native and the modified protein. Our results show that the protein retains its structure even though 10 Lys out of a total of 75 amino acid residues were modified. In the Ca2+- and apo-forms of the protein, the13C-methylated Lys residues can be detected with high sensitivity and resolution using two-dimensional (1H,13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy. ThepKa values of the individual Lys residues in Ca2+-calbindin D9k and apo-calbindin D9k were obtained by combiningpH titration experiments and (1H,13C)-HMQC NMR spectroscopy. Each Lys residue in the Ca2+- and apo-forms of calbindin D9k has a uniquepKa value. The LyspKa values in the calcium protein range from 9.3 to 10.9, while those in the apo-protein vary between 9.7 and 10.7. Although apo-calbindin D9k has a very similar structure compared to Ca2+-calbindin D9k, the removal of two Ca2+ ions from the protein leads to an increase of thepKa values of the Lys residues.  相似文献   

18.
The Lys residues in the 75-residue Ca2+-binding protein calbindin D9k were reductively methylated with13C-enriched formaldehyde. The possible structural effects resulting from the chemical modification were critically investigated by comparing two-dimensional NMR spectra and the exchange rates of some of the amide protons of the native and the modified protein. Our results show that the protein retains its structure even though 10 Lys out of a total of 75 amino acid residues were modified. In the Ca2+- and apo-forms of the protein, the13C-methylated Lys residues can be detected with high sensitivity and resolution using two-dimensional (1H,13C)-heteronuclear multiple quantum coherence (HMQC) NMR spectroscopy. ThepKa values of the individual Lys residues in Ca2+-calbindin D9k and apo-calbindin D9k were obtained by combiningpH titration experiments and (1H,13C)-HMQC NMR spectroscopy. Each Lys residue in the Ca2+- and apo-forms of calbindin D9k has a uniquepKa value. The LyspKa values in the calcium protein range from 9.3 to 10.9, while those in the apo-protein vary between 9.7 and 10.7. Although apo-calbindin D9k has a very similar structure compared to Ca2+-calbindin D9k, the removal of two Ca2+ ions from the protein leads to an increase of thepKa values of the Lys residues.  相似文献   

19.
Uniform double labeling of proteins for NMR studies can be prohibitively expensive, even with an efficient expression and purification scheme, due largely to the high cost of [13C6, 99%]glucose. We demonstrate here that uniformly (greater than 95%) 13C and 15N double-labeled proteins can be prepared for NMR structure/function studies by growing cells in defined media containing sodium [1,2-13C2, 99%]acetate as the sole carbon source and [15N, 99%]ammonium chloride as the sole nitrogen source. In addition, we demonstrate that this labeling scheme can be extended to include uniform carbon isotope labeling to any desired level (below 50%) by utilizing media containing equal amounts of sodium [1-13C, 99%]acetate and sodium [2-13C, 99%]acetate in conjunction with unlabeled sodium acetate. This technique is less labor intensive and more straightforward than labeling using isotope-enriched algal hydrolysates. These labeling schemes have been used to successfully prepare NMR quantities of isotopically enriched human carbonic anhydrase II. The activity and the 1H NMR spectra of the protein labeled by this technique are the same as those obtained from the protein produced from media containing labeled glucose; however, the cost of the sodium [1,2-13C2, 99%]acetate growth media is considerably less than the cost of the [13C6, 99%]glucose growth media. We report here the first published 13C and 15N NMR spectra of human carbonic anhydrase II as an important step leading to the assignment of this 29-kDa zinc metalloenzyme.  相似文献   

20.
The interaction of three polylysines, Lys(5) (N = 5), Lys(30) (N = 30), and Lys(100) (N = 100), where N is the number of lysine residues per chain, with phosphatidylserine-containing lipid bilayer membranes was investigated using 2H NMR spectroscopy. Lys(30) and Lys(100) added to multilamellar vesicles composed of (70:30) (mol:mol) mixtures of choline-deuterated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) + 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) produced two resolvable 2H NMR spectral components under conditions of low ionic strength and for cases where the global anionic lipid charge was in excess over the global cationic polypeptide charge. The intensities and quadrupolar splittings of the two spectral components were consistent with the existence of polylysine-bound domains enriched in POPS, in coexistence with polylysine-free domains depleted in POPS. Lys(5), however, yielded no 2H NMR resolvable domains. Increasing ionic strength caused domains to become diffuse and eventually dissipate entirely. At physiological salt concentrations, only Lys(100) yielded 2H NMR-resolvable domains. Therefore, under physiological conditions of ionic strength, pH, and anionic lipid bilayer content, and in the absence of other, e.g., hydrophobic, contributions to the binding free energy, the minimum number of lysine residues sufficient to produce spectroscopically resolvable POPS-enriched domains on the 2H NMR millisecond timescale may be fewer than 100, but is certainly greater than 30.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号