首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variation in caribou and reindeer (Rangifer tarandus)   总被引:2,自引:0,他引:2  
Genetic variation at seven microsatellite DNA loci was quantified in 19 herds of wild caribou and domestic reindeer (Rangifer tarandus) from North America, Scandinavia and Russia. There is an average of 2.0-6.6 alleles per locus and observed individual heterozygosity of 0.33-0.50 in most herds. A herd on Svalbard Island, Scandinavia, is an exception, with relatively few alleles and low heterozygosity. The Central Arctic, Western Arctic and Porcupine River caribou herds in Alaska have similar allele frequencies and comprise one breeding population. Domestic reindeer in Alaska originated from transplants from Siberia, Russia, more than 100 years ago. Reindeer in Alaska and Siberia have different allele frequencies at several loci, but a relatively low level of genetic differentiation. Wild caribou and domestic reindeer in Alaska have significantly different allele frequencies at the seven loci, indicating that gene flow between reindeer and caribou in Alaska has been limited.  相似文献   

2.
Reindeer (Rangifer tarandus tarandus) in Alaska are semidomestic livestock descended from 1280 animals introduced from Siberia, Russia, approximately 100 years ago. Genetic variation at 18 microsatellite DNA loci and the cytochrome b gene of mitochondrial DNA (mtDNA) was quantified in reindeer from Alaska, Siberia (Russia), and Scandinavia and compared with wild North American caribou. Mean sequence divergence among 15 mtDNA haplotypes in reindeer was 0.007 substitutions per nucleotide site, and reindeer mtDNA is polyphyletic with caribou mtDNA. Microsatellite allele and mtDNA haplotype frequencies are similar between Alaskan and Russian reindeer and differentiated between these and Scandinavian reindeer. The frequencies of microsatellite alleles and mtDNA haplotypes are different in reindeer and wild caribou (Rangifer tarandus granti, Rangifer tarandus groenlandicus, and Rangifer tarandus caribou). Alaskan reindeer have maintained a genetic variation comparable to that in Russia and differentiated from that of wild caribou, >100 years after their introduction to Alaska.  相似文献   

3.
Defining genetic populations and detecting hybridization with introduced or domestic taxa are two major concerns for the conservation of population-level diversity. We studied the genetic population structure of large, migratory caribou herds (Rangifer tarandus granti) on Alaska’s North Slope and their potential hybridization with introduced domestic reindeer (R. t. tarandus). Using a population genetics approach, we determined: (1) whether the four caribou herds could be differentiated; (2) how distance and population size appear to drive genetic population structure; and (3) how contact with reindeer has affected the genetic identity of herds. Samples from four caribou herds (n = 245) and reindeer (n = 67) were analyzed at 19 microsatellite loci. We found that North Slope caribou are isolated by distance, with no differentiation among herd pairs except for the most geographically distant herds (F st  = 0.003, Jost’s D = 0.023; P-values < 0.001). We detected reindeer-caribou admixture in all populations except Kodiak Island, including 8 % of individuals in caribou herds and 14 % of individuals in Seward Peninsula reindeer herds. However, considering the stable or increasing trend in North Slope herds, reindeer introgression has had no apparent deleterious effect on herd demographics. Our findings indicate long-term genetic exchange among North Slope caribou herds when their ranges overlap, and suggest that herd size may influence susceptibility to reindeer introgression. As North Slope herd ranges are increasingly altered by industrial development, this study can provide a baseline for detecting potential future impacts to what are currently large, diverse, and naturally evolving herds.  相似文献   

4.

Background  

The reindeer (Rangifer tarandus tarandus) industry in Alaska began with animals imported from Siberia (Russia) in the 1890's. Cervid herpes virus 2 (CvHV2) is endemic in reindeer in Scandinavia. We sought to determine if the same virus, or similar herpesviruses, were circulating in Alaskan reindeer and caribou (Rangifer tarandus granti). Serum samples from 292 reindeer were collected during annual reindeer handlings (1988-2005) near Nome, Alaska. In 2005, swab samples were collected from 40 calves from this herd, near Nome, Alaska. In 2007, ocular and nasal swab samples were collected from 30 apparently healthy reindeer calves near Wales, Alaska. Samples of plasma and white blood cells were collected from three Alaskan caribou herds, Mulchatna (n = 24), Teshekpuk (n = 34) and the Western Arctic (n = 87) in 2009.  相似文献   

5.
Wide‐ranging mammals face significant conservation threats, and knowledge of the spatial scale of population structure and its drivers is needed to understand processes that maintain diversity in these species. We analysed DNA from 655 Alaskan caribou (Rangifer tarandus granti) from 20 herds that vary in population size, used 19 microsatellite loci to document genetic diversity and differentiation in Alaskan caribou, and examined the extent to which genetic differentiation was associated with hypothesized drivers of population subdivision including landscape features, population size and ecotype. We found that Alaskan caribou are subdivided into two hierarchically structured clusters: one group on the Alaska Peninsula containing discrete herds and one large group on the Mainland lacking differentiation between many herds. Population size, geographic distance, migratory ecotype and the Kvichak River at the nexus of the Alaska Peninsula were associated with genetic differentiation. Contrary to previous hypotheses, small Mainland herds were often differentiated genetically from large interconnected herds nearby, and genetic drift coupled with reduced gene flow may explain this pattern. Our results raise the possibility that behaviour helps to maintain genetic differentiation between some herds of different ecotypes. Alaskan caribou show remarkably high diversity and low differentiation over a broad geographic scale. These results increase information for the conservation of caribou and other migratory mammals threatened by population reductions and landscape barriers and may be broadly applicable to understanding the spatial scale and ecological drivers of population structure in widespread species.  相似文献   

6.
Knowledge about changes in behavioural traits related to wildness and tameness is for most mammals lacking, despite the increased trend of using domestic stock to re‐establish wild populations into historical ranges. To test for persistence of behavioural traits of wild reindeer (Rangifer tarandus L.) exposed to hunting, we sampled DNA, vigilance and flight responses in wild reindeer herds with varying domestic ancestry. Analyses of 14 DNA microsatellite loci revealed a dichotomous main genetic structure reflecting their native origin, with the Rondane reindeer genetically different from the others and with least differentiation towards the Hardangervidda reindeer. The genetic clustering of the reindeer in Norefjell‐Reinsjøfjell, Ottadalen and Forollhogna, together with domestic reindeer, supports a predominant domestic origin of these herds. Despite extensive hunting in all herds, the behavioural measures indicate increasing vigilance, alert and flight responses with increasing genetic dissimilarity with domestic herds. Vigilance frequency and time spent vigilant were higher in Rondane compared to Hardangervidda, which again were higher than herds with a domestic origin. We conclude that previous domestication has preserved a hard wired behavioural trait in some reindeer herds exhibiting less fright responses towards humans that extensive hunting has, but only slightly, altered. This brings novel and relevant knowledge to discussions about genetic diversity of wildlife in general and wild reindeer herds in Norway in specific.  相似文献   

7.
Over the past centuries the native caribou ofWest Greenland has gone through extensive population size fluctuations, with reductionsas great as 90% in less than 20 years.Norwegian semi-domestic reindeer wereintroduced to the Nuuk area in 1952 because ofthe small number of caribou in Greenland.Although the reindeer and caribou wereinitially kept separated, mixing has occurredsince the 1970's. We investigated the genotypicstructure of caribou and reindeer in South-westGreenland, using five polymorphicmicrosatellite markers isolated from cattle,sheep, goat and red deer. A total of ninetysamples were collected, which included samplesfrom caribou of four different regions andsamples from two different reindeer herds.Based on the genetic variation of the fivemarkers, our results shows that the caribou andthe reindeer populations in the six regionssampled are genetically differentiated withineach group and the two subspecies aredifferentiated from each other. A likelyexplanation for the genetic isolation of thepopulations investigated is that naturalbarriers (glaciers and wide fjords) exists inthe area. Furthermore we found that introducedNorwegian domestic reindeer hybridized with thenative Greenlandic caribou in two areasneighbouring Nuuk.  相似文献   

8.
Why don't Svalbard reindeer migrate?   总被引:1,自引:0,他引:1  
Reindeer and caribou are best known as migratory, seasonally nomadic animals; many continental populations, for example, travel between distinct summer and winter ranges which may lie hundreds of km apart. Much less is known about the movements of animals belonging to island populations. This paper describes seasonal and annual movements of wild reindeer Rangifer tarandus platyrhynchus on the high arctic archipelago of Svalbard, based on observations of nine animals captured and individually marked in Adventdalen, Spitsbergen, between 1977 and 1982. Four ear-tagged reindeer (one male and three females) were followed extensively for between four and seven years. Five radio-collared females were followed intensively for seven months in 1982. Svalbard reindeer seem neither to undertake long migrations nor to be nomadic within seasons like mountain reindeer or barren-ground caribou. They appear instead to use small, traditional, seasonal home ranges more, for example, like red deer or wild sheep. This atypical behaviour is discussed in relation to the dispersion of reindeers' resources in Svalbard.  相似文献   

9.
Infestations of winter ticks (Dermacentor albipictus) on two captive reindeer (Rangifer tarandus tarandus) are reported and may be associated with increased grooming and alopecia. Over 400,000 ticks were recovered from one reindeer. Few ticks (less than 25 ticks/animal) were found on three free-ranging woodland caribou (Rangifer tarandus caribou).  相似文献   

10.
Although there is little doubt that the domestication of mammals was instrumental for the modernization of human societies, even basic features of the path towards domestication remain largely unresolved for many species. Reindeer are considered to be in the early phase of domestication with wild and domestic herds still coexisting widely across Eurasia. This provides a unique model system for understanding how the early domestication process may have taken place. We analysed mitochondrial sequences and nuclear microsatellites in domestic and wild herds throughout Eurasia to address the origin of reindeer herding and domestication history. Our data demonstrate independent origins of domestic reindeer in Russia and Fennoscandia. This implies that the Saami people of Fennoscandia domesticated their own reindeer independently of the indigenous cultures in western Russia. We also found that augmentation of local reindeer herds by crossing with wild animals has been common. However, some wild reindeer populations have not contributed to the domestic gene pool, suggesting variation in domestication potential among populations. These differences may explain why geographically isolated indigenous groups have been able to make the technological shift from mobile hunting to large-scale reindeer pastoralism independently.  相似文献   

11.
Reindeer (Rangifer tarandus tarandus) and caribou (Rangifer tarandus granti) use body stores (capital) and food intake (income) for survival and reproduction. Intakes of low-nitrogen (N) food declined in winter and increased in spring (51-83 g dry matter kg(-0.75) d(-1)). Reindeer calved before regaining food intake, whereas caribou calved 28 d later. Body N was conserved by minimizing oxidation of amino acid N to urea. Maternal protein stored from early winter was used for 96% of fetal growth in reindeer but only 84% of fetal growth in later-birthing caribou. Both subspecies rely on maternal body protein for 91% of the protein deposited in the neonate via milk over the first 4 wk. All females lost body protein over winter, but lactating females continued to lose protein while nonreproductive females regained protein. Net costs of lactation above maintenance were greater for N (110%-130%) than for energy (40%-59%). Large fat stores in reindeer spare body protein from oxidation in winter, whereas in caribou, less fat with the same body protein favors migration when food is inadequate. The resilience of Rangifer populations to variable patterns of food supply and metabolic demand may be related to their ability to alter the timing and allocation of body protein to reproduction.  相似文献   

12.
Abstract: I investigated local and regional differences in percent moss in the feces of muskoxen (Ovibos moschatus) and reindeer or caribou (Rangifer tarandus) in northwestern Alaska, USA, and related fecal moss to forage availability, snow conditions, animal density, and terrain ruggedness on wintering areas. Reindeer are a partially domesticated form of Rangifer tarandus originating from Europe and Asia and differ physiologically and ecologically from caribou. Percent moss in feces of muskoxen differed locally among individual wintering areas. Because of the large local variation in moss content of muskox feces, regional differences between the 2 study areas were difficult to resolve. Percent of moss in the feces of reindeer–caribou did not differ between wintering areas within the same study area but did differ between study areas. On muskox wintering areas, fecal moss correlated negatively with graminoid cover and snow hardness and positively with moss cover and muskox density, but fecal moss did not correlate with snow depth or terrain ruggedness. On reindeer–caribou wintering areas, fecal moss correlated positively with moss availability but not with lichen cover or snow depth or hardness. Because muskox groups in Alaska are isolated from each other in winter, even groups wintering on neighboring hills may face different foraging availability and might, therefore, exhibit differences in growth or productivity. Reindeer–caribou are more mobile than muskoxen in winter, and fecal samples may not be representative of vegetative and snow conditions at the wintering area where I collected them. I conclude that managers can use fecal moss as an indicator of overgrazed ranges, severe snow conditions, or crowded conditions on muskox wintering areas, but that the association between fecal moss and range conditions has to be drawn with caution for the more mobile reindeer–caribou.  相似文献   

13.
The role of Beringia as a refugium and route for trans-continental exchange of fauna during glacial cycles of the past 2million years are well documented; less apparent is its contribution as a significant reservoir of genetic diversity. Using mitochondrial DNA sequences and 14 microsatellite loci, we investigate the phylogeographic history of caribou (Rangifer tarandus) in western North America. Patterns of genetic diversity reveal two distinct groups of caribou. Caribou classified as a Northern group, of Beringian origin, exhibited greater number and variability in mtDNA haplotypes compared to a Southern group originating from refugia south of glacial ice. Results indicate that subspecies R. t. granti of Alaska and R. t. groenlandicus of northern Canada do not constitute distinguishable units at mtDNA or microsatellites, belying their current status as separate subspecies. Additionally, the Northern Mountain ecotype of woodland caribou (presently R. t. caribou) has closer kinship to caribou classified as granti or groenlandicus. Comparisons of mtDNA and microsatellite data suggest that behavioural and ecological specialization is a more recently derived life history characteristic. Notably, microsatellite differentiation among Southern herds is significantly greater, most likely as a result of human-induced landscape fragmentation and genetic drift due to smaller population sizes. These results not only provide important insight into the evolutionary history of northern species such as caribou, but also are important indicators for managers evaluating conservation measures for this threatened species.  相似文献   

14.
Besnoitia sp. was diagnosed in two caribou (Rangifer tarandus caribou) which died of pneumonia at the Assiniboine Park Zoo (Winnipeg, Manitoba, Canada) in 1983. During the following 3 yr besnoitiosis spread to an isolated herd of caribou, to mule deer (Odocoileus hemionus hemionus) and to reindeer (Rangifer tarandus tarandus). Reduction of exposure to biting insects appears to have reduced the transmission of besnoitiosis within the reindeer herd. The morbidity rate was approximately 82% in caribou and 67% in mule deer over the age of 2 mo. Most animals with clinical signs were euthanized; this precluded an estimation of the disease-related mortality rate. Twenty-eight caribou, 10 mule deer and three reindeer have been euthanized or died as a result of this epidemic. Attempts to artificially transmit the disease to potentially susceptible intermediate and definitive hosts were unsuccessful.  相似文献   

15.
16.
Marie Wika 《Acta zoologica》1982,63(4):187-189
Foetuses of reindeer, Rangifer tarandus tarandus L., were collected at slaughter and studied for structural primordial stages of pedicle formation and antler growth. Fresh foetuses studied in January and February exhibited a round, pale area with an epidermal infolding or groove at the site of the future antler development. Also, in an ethanol-fixed caribou foetus from Alaska, an epidermal invagination could be seen in the area of later pedicle formation. No protruding bone or cartilage was observed as primordial stages of antler growth in reindeer foetuses collected from 10 November to 26 April. It is concluded that an epidermal infolding exists in the foetus of telemetacarpal cervids such as reindeer and caribou.  相似文献   

17.
Recent research has linked climate warming to global declines in caribou and reindeer (both Rangifer tarandus) populations. We hypothesize large‐scale climate patterns are a contributing factor explaining why these declines are not universal. To test our hypothesis for such relationships among Alaska caribou herds, we calculated the population growth rate and percent change of four arctic herds using existing population estimates, and explored associations with indices of the Arctic Oscillation (AO) and the Pacific Decadal Oscillation (PDO). The AO, which more strongly affects eastern Alaska, was negatively associated with the population trends of the Porcupine Caribou Herd and Central Arctic Herd, the easternmost of the herds. We hypothesize that either increased snowfall or suboptimal growing conditions for summer forage plants could explain this negative relationship. Intensity of the PDO, which has greatest effects in western Alaska, was negatively associated with the growth rate of the Teshekpuk Caribou Herd in northwestern Alaska, but the Western Arctic Herd in western Alaska displayed the opposite trend. We suggest that the contrasting patterns of association relate to the spatial variability of the effects of the PDO on western and northwestern Alaska. Although predation and winter range quality have often been considered the primary causes of population variation, our results show that large‐scale climate patterns may play an important role in caribou population dynamics in arctic Alaska. Our findings reveal that climate warming has not acted uniformly to reduce caribou populations globally. Further research should focus on the relative importance of mechanisms by which climate indices influence caribou population dynamics.  相似文献   

18.
Just as the domestication of livestock is often cited as a key element in the Neolithic transition to settled, the emergence of large‐scaled reindeer husbandry was a fundamental social transformation for the indigenous peoples of Arctic Eurasia. To better understand the history of reindeer domestication, and the genetic processes associated with the pastoral transition in the Eurasian Arctic, we analyzed archaeological and contemporary reindeer samples from Northwestern Siberia. The material represents Rangifer genealogies spanning from 15,000 years ago to the 18th century, as well as modern samples from the wild Ta?myr population and from domestic herds managed by Nenetses. The wild and the domestic population are the largest populations of their kind in Northern Eurasia, and some Nenetses hold their domestic reindeer beside their wild cousins. Our analyses of 197 modern and 223 ancient mitochondrial DNA sequences revealed two genetic clusters, which are interpreted as representing the gene pools of contemporary domestic and past wild reindeer. Among a total of 137 different mitochondrial haplotypes identified in both the modern and archaeological samples, only 21 were detected in the modern domestic gene pool, while 11 of these were absent from the wild gene pool. The significant temporal genetic shift that we associate with the pastoral transition suggests that the emergence and spread of reindeer pastoralism in Northwestern Siberia originated with the translocation and subsequent selective breeding of a special type of animal from outside the region. The distinct and persistent domestic characteristics of the haplotype structure since the 18th century suggests little genetic exchange since then. The absence of the typical domestic clade in modern nearby wild populations suggests that the contemporary Nenets domestic breed feature an ancestry from outside its present main distribution, possibly from further South.  相似文献   

19.
No significant lesions of atherosclerosis or other vascular diseases were found in the aorta and coronary arteries of 34 reindeer and 15 caribou (Rangifer tarandus). Serum lipid, phospholipid, cholesterol and triglyceride levels were similar in caribou and reindeer and did not differ greatly from those reported in other ruminants.  相似文献   

20.
Reindeer and caribou Rangifer tarandus are reported to avoid human infrastructure such as roads, high-voltage power lines, pipelines, and tourist resorts. Lichens are important forage for reindeer during winter, and their relatively slow growth rates make them vulnerable to overgrazing. Height and volume of lichens are often used as an indicator of grazing pressure by reindeer and, thus, as an indirect measure of Rangifer avoidance of human infrastructure. We sampled lichen height in Cetraria nivalis-dominated communities along 4 and 3 parallel transects located on two parallel mountain ridges in Hardangervidda, south central Norway. The lichen measurements were analyzed in relation to altitude and the distance from four tourist cabins in the area and a highway (Rv7) running perpendicular to the 7 transects. The mountain ridge with 4 transects is part of a much used migratory corridor for wild reindeer R. tarandus tarandus. Along the nonmigratory ridge, lichen height decreased 35% over an 8-km distance from Rv7 and a tourist cabin, indicating reindeer aversion toward Rv7 and/or a tourist cabin. No similar relationship was found for the migration ridge in relation to distance from Rv7 or the tourist cabins. Our results suggest that avoidance of human infrastructure by wild reindeer might be limited where reindeer use of winter pastures is influenced by herd traditions and/or motivation to follow established migration corridors. This has important implications for addressing the use of similar pasture measurements when testing for Rangifer aversion toward human disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号