共查询到20条相似文献,搜索用时 15 毫秒
1.
T Okagaki S Higashi-Fujime R Ishikawa H Takano-Ohmuro K Kohama 《Journal of biochemistry》1991,109(6):858-866
ATP-dependent movement of actin filaments on smooth muscle myosin was investigated by using the in vitro motility assay method in which myosin was fixed on the surface of a coverslip in a phosphorylated or an unphosphorylated state. Actin filaments slid on gizzard myosin phosphorylated with myosin light chain kinase (MLCK) at a rate of 0.35 micron/s, but did not slide at all on unphosphorylated myosin. The movement of actin filaments on phosphorylated myosin was stopped by perfusion of phosphatase. Subsequent perfusion with a solution containing MLCK, calmodulin, and Ca2+ enabled actin filaments to move again. The sliding velocities on monophosphorylated and diphosphorylated myosin by MLCK were not different. Actin filaments did not move on myosin phosphorylated with protein kinase C (PKC). The sliding velocity on myosin phosphorylated with both MLCK and PKC was identical to that on myosin phosphorylated only with MLCK. Gizzard tropomyosin enhanced the sliding velocity to 0.76 micron/s. Gizzard caldesmon decreased the sliding velocity with increase in its concentration. At a 5-fold molar ratio of caldesmon to actin, the movement stopped completely. This inhibitory effect of caldesmon was relieved upon addition of excess calmodulin and Ca2+. 相似文献
2.
Kelvin Ip Apolinary Sobieszek Dennis Solomon Yuekan Jiao Peter D Paré Chun Y Seow 《Cellular physiology and biochemistry》2007,20(5):649-658
BACKGROUND AND AIMS: Smooth muscle myosin monomers self-assemble in solution to form filaments. Phosphorylation of the 20-kD regulatory myosin light chain (MLC20) enhances filament formation. It is not known whether the phosphorylated and non-phosphorylated filaments possess the same structural integrity. METHODS: We purified myosin from bovine trachealis to form filaments, in ATP-containing zero-calcium solution during a slow dialysis that gradually reduced the ionic strength. Sufficient myosin light chain kinase and phosphatase, as well as calmodulin, were retained after the myosin purification and this enabled phosphorylation of MLC20 within 20-40s after addition of calcium to the filament suspension. The phosphorylated and non-phosphorylated filaments were then partially disassembled by ultrasonification. The extent of filament disintegration was visualized and quantified by atomic force microscopy. RESULTS: MLC20 phosphorylation reduced the diameter of the filaments and rendered the filaments more resistant to ultrasonic agitation. Electron microscopy revealed a similar reduction in filament diameter in intact smooth muscle when the cells were activated. CONCLUSION: Modification of the structural and physical properties of myosin filaments by MLC20 phosphorylation may be a key regulation step in smooth muscle where formation and dissolution of the filaments are required in the cells' adaptation to different cell length. 相似文献
3.
Feng Hong Richard K. Brizendine Michael S. Carter Diego B. Alcala Avery E. Brown Amy M. Chattin Brian D. Haldeman Michael P. Walsh Kevin C. Facemyer Josh E. Baker Christine R. Cremo 《The Journal of general physiology》2015,146(4):267-280
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot–labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto–myosin and MLCK–myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting “stuck” on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. 相似文献
4.
Phosphorylation of myosin light chain modulates the in vitro movement of fibrils composed of actin and myosin filaments from skeletal muscle 总被引:1,自引:0,他引:1
S Higashi-Fujime 《Journal of biochemistry》1983,94(5):1539-1545
In vitro movement of fibrils composed of actin and myosin filaments purified from skeletal muscle was observed by dark field microscopy during superprecipitation at low ionic strengths at room temperature. The movement was activated by phosphorylation of light chain (LC2) of myosin. The activity of the movement was evaluated in terms of the spreading of the area where the fibrils were moving. Adenosine triphosphatase activity of actomyosin was also enhanced by phosphorylation of LC2 and was correlated with the activity of the in vitro movement. 相似文献
5.
6.
Functional role of the C-terminal domain of smooth muscle myosin light chain kinase on the phosphorylation of smooth muscle myosin 总被引:1,自引:0,他引:1
Smooth muscle myosin light chain kinase (MLCK) is known to bind to thin filaments and myosin filaments. Telokin, an independently expressed protein with an identical amino acid sequence to that of the C-terminal domain of MLCK, has been shown to bind to unphosphorylated smooth muscle myosin. Thus, the functional significance of the C-terminal domain and the molecular morphology of MLCK were examined in detail. The C-terminal domain was removed from MLCK by alpha-chymotryptic digestion, and the activity of the digested MLCK was measured using myosin or the isolated 20-kDa light chain (LC20) as a substrate. The results showed that the digestion increased K(m) for myosin 3-fold whereas it did not change the value for LC20. In addition, telokin inhibited the phosphorylation of myosin by MLCK by increasing K(m) but only slightly increased K(m) for LC20. Electron microscopy indicated that MLCK was an elongated molecule but was flexible so as to form folded conformations. MLCK was crosslinked to unphosphorylated heavy meromyosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the absence of Ca(2+)/calmodulin (CaM), and electron microscopic observation of the products revealed that the MLCK molecule bound to the head-tail junction of heavy meromyosin. These results suggest that MLCK binds to the head-tail junction of unphosphorylated myosin through its C-terminal domain, where LC20 can be promptly phosphorylated through its catalytic domain following the Ca(2+)/CaM-dependent activation. 相似文献
7.
Cross-bridges on self-assembled smooth muscle myosin filaments 总被引:3,自引:0,他引:3
A Sobieszek 《Journal of molecular biology》1972,70(3):741-744
8.
Graceffa P 《The Journal of biological chemistry》2000,275(22):17143-17148
It has been shown that skeletal and smooth muscle myosin heads binding to actin results in the movement of smooth muscle tropomyosin, as revealed by a change in fluorescence resonance energy transfer between a fluorescence donor on tropomyosin and an acceptor on actin (Graceffa, P. (1999) Biochemistry 38, 11984-11992). In this work, tropomyosin movement was similarly monitored as a function of unphosphorylated and phosphorylated smooth muscle myosin double-headed fragment smHMM. In the absence of nucleotide and at low myosin head/actin ratios, only phosphorylated heads induced a change in energy transfer. In the presence of ADP, the effect of head phosphorylation was even more dramatic, in that at all levels of myosin head/actin, phosphorylation was necessary to affect energy transfer. It is proposed that the regulation of tropomyosin position on actin by phosphorylation of myosin heads plays a key role in the regulation of smooth muscle contraction. In contrast, actin-bound caldesmon was not moved by myosin heads at low head/actin ratios, as uncovered by fluorescence resonance energy transfer and disulfide cross-linking between caldesmon and actin. At higher head concentration caldesmon was dissociated from actin, consistent with the multiple binding model for the binding of caldesmon and myosin heads to actin (Chen, Y., and Chalovich, J. M. (1992) Biophys. J. 63, 1063-1070). 相似文献
9.
Influence of smooth muscle myosin conformation on myosin light chain kinase binding and on phosphorylation 总被引:2,自引:0,他引:2
Conventional smooth muscle myosin preparations contain a tightly bound myosin light chain kinase activity, which is incompletely removed by gel filtration at high ionic strength. We show here that by contrast, this kinase activity is released, together with calmodulin, under conditions in which myosin is in the folded configuration. The conformation-related release of kinase occurred for dephosphorylated myosin in both the presence and absence of ATP and Ca2+. Binding of kinase to extended phosphorylated myosin was relatively weaker than to dephosphorylated myosin, but was nonetheless detected. The kinetic consequences of this binding behaviour were determined by measuring initial myosin phosphorylation rates as a function of KCl concentration. Rate optima occurred at 60 mM KCl and 300 mM KCl, conditions favouring respectively stable filaments and stable extended monomers. Phosphorylation of the folded monomer was uniformly slow at low KCl concentrations. The folded myosin monomer is thus a relatively poor substrate for the kinase, and is therefore unlikely to represent an analog of the relaxed crossbridge configuration in myosin filaments. 相似文献
10.
Hayakawa K Okagaki T Ye LH Samizo K Higashi-Fujime S Takagi T Kohama K 《Biochimica et biophysica acta》1999,1450(1):12-24
In addition to its kinase activity, myosin light chain kinase has an actin-binding activity, which results in bundling of actin filaments [Hayakawa et al., Biochem. Biophys. Res. Commun. 199, 786-791, 1994]. There are two actin-binding sites on the kinase: calcium- and calmodulin-sensitive and insensitive sites [Ye et al., J. Biol. Chem. 272, 32182-32189, 1997]. The calcium/calmodulin-sensitive, actin-binding site is located at Asp2-Pro41 and the insensitive site is at Ser138-Met213. The cyanogen bromide fragment, consisting of Asp2-Met213, is furnished with both sites and is the actin-binding core of myosin light chain kinase. Cross-linking between the two sites assembles actin filaments into bundles. Breaking of actin-binding at the calcium/calmodulin-sensitive site by calcium/calmodulin disassembles the bundles. 相似文献
11.
12.
Mechanism of smooth muscle myosin phosphorylation 总被引:8,自引:0,他引:8
In vertebrate smooth muscles, phosphorylation of the regulatory light chain appears to be necessary for actin activation of the Mg-ATPase activity and for the in vitro assembly of myosin into filaments. From a correlation between the degree of phosphorylation and enzymatic activity, it was suggested that both myosin heads must be phosphorylated before either head could be activated by actin, and that phosphorylation of filamentous myosin occurred in a negatively cooperative manner (Persechini, A., and Hartshorne, D. J. (1981) Science 213, 1383-1385; Ikebe, M., Ogihara, S., and Tonomura, Y. (1982) J. Biochem. (Tokyo) 91, 1809-1812; Sellers, J. R., Chock, P. B., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14181-14188). Here we have determined the mechanism of phosphorylation by separating dephosphorylated and phosphorylated myosin species based on their different structural properties in the minifilament buffer system (5 mM citrate, 22 mM Tris). Fully phosphorylated myosin remained assembled as minifilaments in 1 mM Mg-ATP, but dephosphorylated myosin dissociated to a mixture of folded monomers and dimers. Gel filtration was used to separate these two structures. At intermediate levels of phosphorylation, the relative amount of myosin that formed minifilament and dimer and the degree of phosphorylation of the separated species relative to the initial level of phosphorylation was measured. From these data, it was possible to deduce that singly and doubly phosphorylated myosin remained assembled in the presence of nucleotide. Myosin molecules with 0, 1, or 2 heads phosphorylated could also be separated by nondenaturing gel electrophoresis. The amount of myosin which formed each species was quantitated as a function of phosphorylation. Results from the combined approaches are consistent with a model in which light chain kinase randomly phosphorylates myosin, independent of the state of aggregation of the myosin. 相似文献
13.
Synthetic myosin filaments from vertebrate smooth muscle 总被引:6,自引:0,他引:6
B Kaminer 《Journal of molecular biology》1969,39(2):257-264
14.
《The Journal of cell biology》1987,105(6):3021-3030
Filaments formed from phosphorylated smooth muscle myosin are stable in the presence of MgATP, whereas dephosphorylated filaments are disassembled to a mixture of folded monomers and dimers. The stability of copolymers of phosphorylated and dephosphorylated myosin was, however, unknown. Gel filtration, sedimentation velocity, and pelleting assays were used to show that MgATP could dissociate dephosphorylated myosin from copolymers containing either rod and myosin or dephosphorylated and phosphorylated myosin. Copolymers were typically formed by dialyzing monomeric mixtures into filament-forming buffer but, unexpectedly, could also be formed within minutes of mixing preformed rod and myosin minifilaments. This result suggested that molecules can rapidly and extensively exchange between filaments, presumably via the monomeric pool of myosin in equilibrium with polymer. An exchange of molecules between filaments was demonstrated directly by electron microscopy using gold-labeled streptavidin or antibody to detect the exchanged species. By this approach it was shown that smooth muscle myosin filaments, like other macromolecular assemblies, are dynamic structures that can readily alter their composition in response to changing solvent conditions. Moreover, because folded monomeric myosin is unable to polymerize, these experiments suggest a mechanism for the disassembly of the filament by MgATP. 相似文献
15.
16.
The in vitro assembly of myosin purified from calf aorta muscle has been studied by electron microscopy. Two types of filament are formed: short bipolar filament similar to those formed from skeletal muscle myosin, and longer "side-polar" filaments having cross bridges with a single polarity along the entire length of one side and the opposite polarity along the other side. Unlike the case with skeletal myosin filaments, antiparallel interactions between myosin molecules occur along the whole length of side-polar filaments. The side-polar structure may be related to the in vivo form of myosin in vertebrate smooth muscle. 相似文献
17.
18.
Phosphorylation of the regulatory light chain of myosin II by myosinlight chain kinase is important for regulating many contractile processes.Smooth muscle myosin light chain kinase has been shown to be associated withboth actin and myosin filaments in vitro and in vivo. In this report wedefine an actin binding region by using molecular deletions to generaterecombinant mutant proteins that were analyzed by co-sedimentation withF-actin. An actin binding region restricted to residues 2-42 in the animoterminus of the rabbit smooth muscle myosin light chain kinase wasidentified. 相似文献
19.
Tracheal smooth muscle precontracted with carbachol relaxes upon the addition of 3 μM okadaic add. Although cytosolic Ca2+ concentrations decrease, myosin light chain remains highly phosphorylated (50%). In smooth muscle treated with carbachol alone or carbachol plus okadaic acid 32P is incorporated into a single peptide on myosin light chain which corresponds to the site phosphorylated by myosin light chain kinase. Treatment with okadaic acid alone does not result in myosin light chain phosphorylation or tension development. These results suggest that a cellular mechanism other than myosin light chain phosphorylation can regulate contractile tension. 相似文献
20.
Experiments have been done to determine the relationships among active force output, average rate of high-energy phosphate utilization, and the degree of phosphorylation of the 20,000-dalton myosin light chain in the rabbit tenia coli at 18 C. During an isometric tetanus at l0 the degree of light chain phosphorylation increases to a maximum of 30-40% before maximum force is developed, and then phosphorylation slowly decreases while active force is maintained. During the period when there is a small decrease in degree of phosphorylation, the average rate of chemical energy usage falls by fourfold. In contrast, when the calcium concentration of the bathing medium is lowered from 1.9 to 1.0 mM a very large decrease in degree of phosphorylation is associated with only a small decrease in both energy usage and active force. At lower calcium levels both force and chemical energy usage decrease proportionately with little further decrease in degree of phosphorylation. We conclude that under isometric conditions there is no consistent relationship between degree of myosin light chain phosphorylation and the rate of cross-bridge cycling as measured by the rate of high-energy phosphate usage in this mammalian smooth muscle. 相似文献