首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Previous studies indicated that activation of PKC and Src tyrosine kinases by ischemic preconditioning (PC) may participate in the activation of NF-kappa B. However, the molecular mechanisms underlying activation of NF-kappa B during ischemic PC remain unknown. In the hearts of conscious rabbits, it was found that ischemic PC (6 cycles of 4-min coronary occlusion and 4-min reperfusion) significantly induced both tyrosine (+226.9 +/- 42%) and serine (+137.0 +/- 36%) phosphorylation of the NF-kappa B inhibitory protein I kappa B-alpha, concomitant with increased activation of the I kappa B-alpha kinases IKK alpha (+255.0 +/- 46%) and IKK beta (+173.1 +/- 35%). Furthermore, both tyrosine and serine phosphorylation of I kappa B-alpha were blocked by pretreatment with either the nonreceptor tyrosine kinase inhibitor lavendustin-A (LD-A) or the PKC inhibitor chelerythrine (Che) (both given at doses previously shown to block ischemic PC). Interestingly, Che completely abolished PC-induced activation of IKK alpha/beta, whereas LD-A had no effect. In addition, I kappa B-alpha protein level did not change during ischemic PC. Together, these data indicate that ischemic PC-induced activation of NF-kappa B occurs through both tyrosine and serine phosphorylation of I kappa B-alpha and is regulated by nonreceptor tyrosine kinases and PKC.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
《The Journal of cell biology》1996,133(5):1083-1093
We report here that both kappa B-dependent transactivation of a reporter gene and NF-kappa B activation in response to tumor necrosis factor (TNF alpha) or H2O2 treatments are deficient in human T47D cell transfectants that overexpress seleno-glutathione peroxidase (GSHPx). These cells feature low reactive oxygen species (ROS) levels and decreased intracellular ROS burst in response to TNF alpha treatment. Decreased ROS levels and NF-kappa B activation were likely to result from GSHPx increment since these phenomena were no longer observed when GSHPx activity was reduced by selenium depletion. The cellular contents of the two NF-kappa B subunits (p65 and p50) and of the inhibitory subunit I kappa B-alpha were unaffected by GSHPx overexpression, suggesting that increased GSHPx activity interfered with the activation, but not the synthesis or stability, of Nf-kappa B. Nuclear translocation of NF-kappa B as well as I kappa B-alpha degradation were inhabited in GSHPx-overexpressing cells exposed to oxidative stress. Moreover, in control T47D cells exposed to TNF alpha, a time correlation was observed between elevated ROS levels and I kappa B- alpha degradation. We also show that, in growing T47D cells, GSHPx overexpression altered the isoform composition of I kappa B-alpha, leading to the accumulation of the more basic isoform of this protein. GSHPx overexpression also abolished the TNF alpha-mediated transient accumulation of the acidic and highly phosphorylated I kappa B-alpha isoform. These results suggest that intracellular ROS are key elements that regulate the phosphorylation of I kappa B-alpha, a phenomenon that precedes and controls the degradation of this protein, and then NF- kappa B activation.  相似文献   

13.
14.
Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B   总被引:10,自引:0,他引:10  
With the emerging role of NF-kappa B in cancer it is important that its responses to stimuli relevant to tumor progression and therapy are understood. Here, we demonstrate that NF-kappa B induced by cytotoxic stimuli, such as ultraviolet light (UV-C) and the chemotherapeutic drugs daunorubicin/doxorubicin, is functionally distinct to that seen with the inflammatory cytokine TNF and is an active repressor of antiapoptotic gene expression. Surprisingly, these effects are mediated by the RelA(p65) NF-kappa B subunit. Furthermore, UV-C and daunorubicin inhibit TNF-induced NF-kappa B transactivation, indicating that this is a dominant effect. Consistent with this, mechanistic studies reveal that UV-C and daunorubicin induce the association of RelA with histone deacetylases. RelA can therefore be both an activator and repressor of its target genes, dependent upon the manner in which it is induced. This has important implications for the role of NF-kappa B in tumorigenesis and the use of NF-kappa B inhibitors in cancer therapy.  相似文献   

15.
16.
In vivo control of NF-kappa B activation by I kappa B alpha.   总被引:44,自引:8,他引:36       下载免费PDF全文
N R Rice  M K Ernst 《The EMBO journal》1993,12(12):4685-4695
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号