首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helix propensities of the amino acids have been measured in alanine-based peptides in the absence of helix-stabilizing side-chain interactions. Fifty-eight peptides have been studied. A modified form of the Lifson-Roig theory for the helix-coil transition, which includes helix capping (Doig AJ, Chakrabartty A, Klingler TM, Baldwin RL, 1994, Biochemistry 33:3396-3403), was used to analyze the results. Substitutions were made at various positions of homologous helical peptides. Helix-capping interactions were found to contribute to helix stability, even when the substitution site was not at the end of the peptide. Analysis of our data with the original Lifson-Roig theory, which neglects capping effects, does not produce as good a fit to the experimental data as does analysis with the modified Lifson-Roig theory. At 0 degrees C, Ala is a strong helix former, Leu and Arg are helix-indifferent, and all other amino acids are helix breakers of varying severity. Because Ala has a small side chain that cannot interact significantly with other side chains, helix formation by Ala is stabilized predominantly by the backbone ("peptide H-bonds"). The implication for protein folding is that formation of peptide H-bonds can largely offset the unfavorable entropy change caused by fixing the peptide backbone. The helix propensities of most amino acids oppose folding; consequently, the majority of isolated helices derived from proteins are unstable, unless specific side-chain interactions stabilize them.  相似文献   

2.
Trifluoroethanol (TFE) is often used to increase the helicity of peptides to make them usable as models of helices in proteins. We have measured helix propensities for all 20 amino acids in water and two concentrations of trifluoroethanol, 15 and 40% (v/v) using, as a model system, a peptide derived from the sequence of the alpha-helix of ribonuclease T1. There are three main conclusions from our studies. (1) TFE alters electrostatic interactions in the ribonuclease T1 helical peptide such that the dependence of the helical content on pH is lost in 40% TFE. (2) Helix propensities measured in 15% TFE correlate well with propensities measured in water, however, the correlation with propensities measured in 40% TFE is significantly worse. (3) Propensities measured in alanine-based peptides and the ribonuclease T1 peptide in TFE show very poor agreement, revealing that TFE greatly increases the effect of sequence context.  相似文献   

3.
Thermal unfolding curves have been measured for a series of short alanine-based peptides that contain repeating sequences and varying chain lengths. Standard helix-coil theory successfully fits the observed transition curves, even for these short peptides. The results provide values for sigma, the helix nucleation constant, delta H0, the enthalpy change on helix formation, and for s (0 degree C), the average helix propagation parameter at 0 degree C. The enthalpy change agrees with the value determined calorimetrically. The success of helix-coil theory in describing the unfolding transitions of short peptides in water indicates that helical propensities, or s values, can be determined from substitution experiments in short alanine-based peptides.  相似文献   

4.
Straight-chain, non-natural, nonpolar amino acids norleucine, norvaline, and alpha-amino-n-butyric acid at various spacings do not interact with themselves to stabilize helix formation in alanine-based peptides, but do interact with a Tyr spaced i, i + 4 to stabilize alanine helices, similar to the helix-stabilizing i, i + 4 Tyr-Leu and Tyr-Val interactions reported earlier (Padmanabhan S, Baldwin RL, 1994, J Mol Biol 241:706-713). Leu spaced i, i + 4 from another Leu is measurably helix-stabilizing relative to the corresponding i, i + 3 pair, but less so than for i, i + 4 Val-Leu, Ile-Leu, or Phe-Leu pairs (relative to the corresponding i, i + 3 pairs) when Leu is C-terminal to the other nonpolar amino acid. Our results indicate that limited side-chain flexibility in an alpha-helix strongly favors the interaction between 2 nonpolar residues to stabilize an isolated alpha-helix.  相似文献   

5.
The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.  相似文献   

6.
Stomoxyn and spinigerin belong to the class of linear cysteine-free insect antimicrobial peptides that kill a range of microorganisms, parasites, and some viruses but without any lytic activity against mammalian erythrocytes. Stomoxyn is localized in the gut epithelium of the nonvector stable fly that is sympatric with the trypanosome vector tsetse fly. Spinigerin is stored and secreted by hemocytes from the fungus-growing termite. The structure of synthetic stomoxyn and spinigerin in aqueous solution and in TFE/water mixtures was analyzed by CD and NMR spectroscopy combined with molecular modeling calculations. Stomoxyn and spinigerin adopt a flexible random coil structure in water while both assume a stable helical structure in the presence of TFE. In 50% TFE, the structure of stomoxyn is typical of cecropins, including an amphipathic helix at the N-terminus and a hydrophobic C-terminus with helical features that probably fold in a helical conformation at higher TFE concentration. In contrast to stomoxyn, spinigerin acquires very rapidly a helical conformation. In 10% TFE the helix is highly bent and the structure is poorly defined. In 50% TFE, the helical structure is well defined all along its sequence, and the slightly bent alpha-helix displays an amphiphilic character, as observed for magainin 2. The structural similarities between stomoxyn and cecropin A from Hyalophora cecropia and between spinigerin and magainin 2 suggest a similar mode of action on the bacterial membranes of both pairs of peptides. Our results also confirm that TFE induces helix formation and propagation for amino acids showing helical propensity in water but also enhances the helix propagation propensity of nonpolar beta-branched residues.  相似文献   

7.
N2 is the second position in the alpha-helix. All 20 amino acids were placed in the N2 position of a synthetic helical peptide (CH(3)CO-[AXAAAAKAAAAKAAGY]-NH(2)) and the helix content was measured by circular dichroism spectroscopy at 273K. The dependence of peptide helicity on N2 residue identity has been used to determine a free-energy scale by analysis with a modified Lifson-Roig helix-coil theory that includes a parameter for the N2 energy (n2). The rank order of DeltaDeltaG((relative to Ala)) is Glu(-), Asp(-) > Ala > Glu(0), Leu, Val, Gln, Thr, Ile, Ser, Met, Asp(0), His(0), Arg, Cys, Lys, Phe > Asn, > Gly, His(+), Pro, Tyr. The results correlate very well with N2 propensities in proteins, moderately well with N1 and helix interior preferences, and not at all with N-cap preferences. The strongest energetic effects result from interactions with the helix dipole, which favors negative charges at the helix N terminus. Hydrogen bonds to side chains at N2, such as Gln, Ser, and Thr, are weak, despite occurring frequently in protein crystal structures, in contrast to the N-cap position. This is because N-cap hydrogen bonds are close to linear, whereas N2 hydrogen bonds have poor geometry. These results can be used to modify protein stability rationally, help design helices, and improve prediction of helix location and stability.  相似文献   

8.
The first three residues at the N terminus of the alpha-helix are called N1, N2 and N3. We surveyed 2102 alpha-helix N termini in 298 high-resolution, non-homologous protein crystal structures for N1, N2 and N3 amino acid and side-chain rotamer propensities and hydrogen-bonding patterns. We find strong structural preferences that are unique to these sites. The rotamer distributions as a function of amino acid identity and position in the helix are often explained in terms of hydrogen-bonding interactions to the free N1, N2 and N3 backbone NH groups. Notably, the "good N2" amino acid residues Gln, Glu, Asp, Asn, Ser, Thr and His preferentially form i, i or i,i+1 hydrogen bonds to the backbone, though this is hindered by good N-caps (Asp, Asn, Ser, Thr and Cys) that compete for these hydrogen bond donors. We find a number of specific side-chain to side-chain interactions between N1 and N2 or between the N-cap and N2 or N3, such as Arg(N-cap) to Asp(N2). The strong energetic and structural preferences found for N1, N2 and N3, which differ greatly from positions within helix interiors, suggest that these sites should be treated explicitly in any consideration of helical structure in peptides or proteins.  相似文献   

9.
Ample evidence gathered over the last ten years indicates that unfolded and naturally disordered proteins and peptides can show local order in that short segments can adopt turn or polyproline II-like conformations. These findings show that unfolded states cannot be described by the so-called random coil model which assumes that individual amino acid residues sample the entire sterically accessible parts of the Ramachandran with very similar probabilities. This article reviews the experimental evidence for the notion that amino acid residues have different propensities for polyproline II, β-strand, helical and turn conformations in water. These propensities are changed by interactions with nearest neighbours. We show that for a substantial number of residues the conformational propensities in the unfolded state correlate with values for helix propagation and the Chou-Fasman propensities for β-strands. Based on the presented results we hypothesize that the conformational distributions of a representative set of short peptides could be used for predicting structural distributions of disordered peptides and proteins in the future.  相似文献   

10.
Straight-chain non-polar amino acids are good helix-formers in water   总被引:6,自引:0,他引:6  
For comparison with earlier data on naturally occurring non-polar amino acids (Ala, Leu, Phe, Val, Ile), the comparative helix-forming tendencies have been measured for non-polar amino acid residues that have unbranched side-chains, with an ethyl, propyl or butyl group, and also for methionine. The substitutions are made in a 17-residue alanine-based peptide. The results show that straight-chain non-polar amino acids have high helix-forming tendencies compared to beta-branched non-polar amino acids. Restriction of side-chain conformations in the helix, with a corresponding reduction in conformational entropy, is the likely explanation. There is a small increase in helix-forming tendency as the side-chain increases in length from ethyl to butyl, which suggests that a helix-stabilizing hydrophobic interaction is being detected.  相似文献   

11.
The helix/coil equilibrium of a peptide in solution can be modulated by a variety of side-chain interactions that are not incorporated into the standard statistical mechanical models for prediction of peptide helical content. In this report, we describe a recursive formulation of the Lifson-Roig model that facilitates incorporation of specific pairwise side-chain interactions as well as nonspecific individual side-chain capping interactions. Application of this extended model to a series of host/guest peptides indicates that the apparent delta G value for a pairwise apolar interaction is dependent upon the spacing and orientation but not the sequential location of the participating residues. The apparent delta G values for such interactions are about 40% greater than the corresponding apparent delta delta G values obtained from difference measurements.  相似文献   

12.
Yuko Okamoto 《Proteins》1994,19(1):14-23
Monte Carlo simulated annealing is applied to the study of the α-helix-forming tendencies of seven nonpolar amino acids, Ala, Leu, Met, Phe, Ile, Val, and Gly. Homooligomers of 10 amino acids are used and the helix tendency is calculated by folding α-helicies from completely random initial conformations. The results of the simulation imply that Met, Ala, and Leu are helix formers and that Val, Ile, and Gly are helix breakers, while Phe comes in between the two groups. The differences between helix formers and breakers turned out to be large in agreement with the recent experiments with short peptides. It is argued from the energy distributions of the obtained conformations that the helix tendency is small for the helix breakers because of steric hindrance of side chains. Homoglycine is shown to favor a random coil conformation. The β-strand tendencies of the same homooligomers are also considered, and they are shown to agree with the frequencies of amino acids in β-sheet from the protein data base. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Wang M  Shan L  Wang J 《Biopolymers》2006,83(3):268-279
Two synthetic peptides, SNasealpha1 and SNasealpha2, corresponding to residues G55-I72 and K97-A109, respectively, of staphylococcal nuclease (SNase), are adopted for detecting the role of helix alpha1 (E57-A69) and helix alpha2 (M98-Q106) in the initiation of folding of SNase. The helix-forming tendencies of the two SNase peptide fragments are investigated using circular dichroism (CD) and two-dimensional (2D) nuclear magnetic resonance (NMR) methods in water and 40% trifluoroethanol (TFE) solutions. The coil-helix conformational transitions of the two peptides in the TFE-H2O mixture are different from each other. SNasealpha1 adopts a low population of localized helical conformation in water, and shows a gradual transition to helical conformation with increasing concentrations of TFE. SNasealpha2 is essentially unstructured in water, but undergoes a cooperative transition to a predominantly helical conformation at high TFE concentrations. Using the NMR data obtained in the presence of 40% TFE, an ensemble of alpha-helical structures has been calculated for both peptides in the absence of tertiary interactions. Analysis of all the experimental data available indicates that formation of ordered alpha-helical structures in the segments E57-A69 and M98-Q106 of SNase may require nonlocal interactions through transient contact with hydrophobic residues in other parts of the protein to stabilize the helical conformations in the folding. The folding of helix alpha1 is supposed to be effective in initiating protein folding. The formation of helix alpha2 depends strongly on the hydrophobic environment created in the protein folding, and is more important in the stabilization of the tertiary conformation of SNase.  相似文献   

14.
We have determined the N- and C-capping preferences of all 20 amino acids by substituting residue X in the peptides NH2-XAKAAAAKAAAAKAAGY-CONH2 and in Ac-YGAAKAAAAKAAAAKAX-CO2H. Helix contents were measured by CD spectroscopy to obtain rank orders of capping preferences. The data were further analyzed by our modified Lifson-Roig helix-coil theory, which includes capping parameters (n and c), to find free energies of capping (-RT ln n and -RT ln c), relative to Ala. Results were obtained for charged and uncharged termini and for different charged states of titratable side chains. N-cap preferences varied from Asn (best) to Gln (worst). We find, as expected, that amino acids that can accept hydrogen bonds from otherwise free backbone NH groups, such as Asn, Asp, Ser, Thr, and Cys generally have the highest N-cap preference. Gly and acetyl group are favored, as are negative charges in side chains and at the N-terminus. Our N-cap preference scale agrees well with preferences in proteins. In contrast, we find little variation when changing the identity of the C-cap residue. We find no preference for Gly at the C-cap in contrast to the situation in proteins. Both N-cap and C-cap results for Tyr and Trp are inaccurate because their aromatic groups affect the CD spectrum. The data presented here are of value in rationalizing mutations at capping sites in proteins and in predicting the helix contents of peptides.  相似文献   

15.
A systematic survey was carried out in an unbiased sample of 815 protein chains with a maximum of 20% homology selected from the Protein Data Bank, whose structures were solved at a resolution higher than 1.6 A and with a R-factor lower than 25%. A set of 5556 subsequences with alpha-helix or 3(10)-helix motifs was extracted from the protein chains considered. Global and local propensities were then calculated for all possible amino acid pairs of the type (i, i + 1), (i, i + 2), (i, i + 3), and (i, i + 4), starting at the relevant helical positions N1, N2, N3, C3, C2, C1, and N-int (interior positions), and also at the first nonhelical positions in both termini of the helices, namely, N-cap and C-cap. The statistical analysis of the propensity values has shown that pairing is significantly dependent on the type of the amino acids and on the position of the pair. A few sequences of three and four amino acids were selected and their high prevalence in helices is outlined in this work. The Glu-Lys-Tyr-Pro sequence shows a peculiar distribution in proteins, which may suggest a relevant structural role in alpha-helices when Pro is located at the C-cap position. A bioinformatics tool was developed, which updates automatically and periodically the results and makes them available in a web site.  相似文献   

16.
Various amino acid similarity matrices have been derived using data on physicochemical properties and molecular evolution. Conformational similarity indices, CS(XX'), between different residues are computed here using the distribution of the main-chain and side-chain torsion angles and the values have been used to cluster amino acids in proteins. A subset of these parameters, CS(AX') indicates the extent of similarity in the main-chain and side-chain conformations (phi,psi and chi1) of different residues (X) with Ala (A) and is found to have strong correlation with alpha-helix propensities. However, no subset of CS(XX') provides any linear relationship with beta-sheet propensities, suggesting that the conformational feature favouring the location of a residue in an alpha-helix is different from the one favouring the beta-sheet. Conformationally similar residues (close CS(AX) values) have similar steric framework of the side-chain (linear/branched, aliphatic/aromatic), irrespective of the polarity or hydrophobicity. Cooperative nucleation of helix may be facile for a contiguous stretch of residues with high overall CS(AX) values.  相似文献   

17.
We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position.  相似文献   

18.
We tested the hypothesis that the recurrence of hydrophobic amino acids in a polypeptide at positions falling in an axial, hydrophobic strip if the sequence were coiled as an alpha helix, can lead to helical nucleation on a hydrophobic surface. The hydrophobic surface could anchor such residues, whereas the peptide sequence grows in a helical configuration that is stabilized by hydrogen bonds among carbonyl and amido NH groups along the peptidyl backbone of the helix, and by other intercycle interactions among amino acid side chains. Such bound, helical structures might protect peptides from proteases and/or facilitate transport to a MHC-containing compartment and thus be reflected in the selection of T cell-presented segments. Helical structure in a series of HPLC-purified peptides was estimated from circular dichroism measurements in: 1) 0.01 M phosphate buffer, pH 7.0, 2) that buffer with 45% trifluoroethanol (TFE), and 3) that buffer with di-O-hexadecyl phosphatidylcholine vesicles. By decreasing the dielectric constant of the buffer, TFE enhances intrapeptide interactions generally, whereas the lipid vesicles only provide a surface for hydrophobic interactions. The peptides varied in their strip-of-helix hydrophobicity indices (SOHHI; the mean Kyte-Doolittle hydrophobicities of residues in an axial strip of an alpha helix) and in proline content. Structural order for peptides with helical circular dichroism spectra was estimated as percentage helicity from circular dichroism theta 222 nm values and peptide concentration. A prototypic alpha helical peptide with three cycles plus two amino acids and an axial hydrophobic strip of four leucyl residues (SOHHI = 3.8) was disordered in phosphate buffer, 58% helical in that buffer with 48% TFE, and 36% helical in that buffer with vesicles. Percentage helicity in the presence of vesicles of the subset of peptides without proline followed their SOHHI values. Peptides with multiple prolyl residues had circular dichroism spectra with strong signals, but since they did not have altered spectra in the presence of vesicles relative to phosphate buffer alone, the hydrophobic surface of the vesicle did not appear to stabilize those structures.  相似文献   

19.
Pauling first described the alpha-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 3(10)-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or alpha L C-cap motif. The kinetics of alpha-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.  相似文献   

20.
Vijayakumar M  Qian H  Zhou HX 《Proteins》1999,34(4):497-507
A survey of 322 proteins showed that the short polar (SP) side chains of four residues, Thr, Ser, Asp, and Asn, have a very strong tendency to form hydrogen bonds with neighboring backbone amides. Specifically, 32% of Thr, 29% of Ser, 26% of Asp, and 19% of Asn engage in such hydrogen bonds. When an SP residue caps the N terminal of a helix, the contribution to helix stability by a hydrogen bond with the amide of the N3 or N2 residue is well established. When an SP residue is in the middle of a helix, the side chain is unlikely to form hydrogen bonds with neighboring backbone amides for steric and geometric reasons. In essence the SP side chain competes with the backbone carbonyl for the same hydrogen-bonding partner (i.e., the backbone amide) and thus SP residues tend to break backbone carbonyl-amide hydrogen bonds. The proposition that this is the origin for the low propensities of SP residues in the middle of alpha helices (relative to those of nonpolar residues) was tested. The combined effects of restricting side-chain rotamer conformations (documented by Creamer and Rose, Proc Acad Sci USA, 1992;89:5937-5941; Proteins, 1994;19:85-97) and excluding side- chain to backbone hydrogen bonds by the helix were quantitatively analyzed. These were found to correlate strongly with four experimentally determined scales of helix-forming propensities. The correlation coefficients ranged from 0.72 to 0.87, which are comparable to those found for nonpolar residues (for which only the loss of side-chain conformational entropy needs to be considered).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号