共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Günter Müller Christian Jung Julia Straub Susanne Wied Werner Kramer 《Cellular signalling》2009,21(2):324-338
Synthesis and degradation of lipids in mammalian adipocytes are tightly and coordinatedly regulated by insulin, fatty acids, reactive oxygen species and drugs. Conversely, the lipogenic or lipolytic state of adipocytes is communicated to other tissues by the secretion of soluble adipocytokines. Here we report that insulin, palmitate, H2O2 and the antidiabetic sulfonylurea drug glimepiride induce the release of the typical lipid droplet (LD) protein, perilipin-A, as well as typical plasma membrane microdomain (DIGs) proteins, such as caveolin-1 and the glycosylphosphatidylinositol (GPI)-anchored proteins, Gce1 and CD73 from rat adipocytes. According to biochemical and morphological criteria these LD and GPI-proteins are embedded within two different types of phospholipid-containing membrane vesicles, collectively called adiposomes. Adiposome release was not found to be causally related to cell lysis or apoptosis. The interaction of Gce1 and CD73 with the adiposomes apparently depends on their intact GPI anchor. Pull-down of caveolin-1, perilipin-A and CD73 together with phospholipids (via binding to annexin-V) as well as mutually of caveolin-1 with CD73 or perilipin-A (via coimmunoprecipitation) argues for their colocalization within the same adiposome vesicle.Taken together, certain lipogenic and anti-lipolytic agents induce the specific release of a subset of LD and DIGs proteins, including certain GPI-proteins, in adiposomes from primary rat adipocytes. Given the (c)AMP-degrading activities of Gce1 and CD73 and LD-forming function of perilipin-A and caveolin-1, the physiological relevance of the release of adiposomes from adipocytes may rely on the intercellular transfer of lipogenic and anti-lipolytic information. 相似文献
3.
Jean‐François Carmel Evelyne Tarnus Jeffrey S. Cohn Emmanuel Bourdon Jean Davignon Lise Bernier 《Journal of cellular biochemistry》2009,106(4):608-617
Apolipoprotein E (apoE), a key regulator of lipid metabolism, is highly produced by adipose tissue and adipocytes. However, there is little information about its role on adipocyte functions. Because apoE‐deficiency in adipocytes was shown to impair adipocyte differentiation, we investigated the consequences of apoE high expression on differentiation and proliferation of a human adipocytic cell line (SW872). SW872 cells were transfected with human apoE to induce a fivefold increase in apoE production and secretion. Adipocyte differentiation and proliferation were assayed by measuring lipid content, adipogenic gene expression, cell number, cell resistance to serum deprivation, and cell division kinetics. Cultured apoE‐transfected cells accumulated less triglycerides and less cholesterol than control cells. This decrease in lipid accumulation was associated with a strong downregulation of peroxisome proliferator‐activated receptors γ1 and γ2 and stearoyl‐CoA desaturase 1. The decrease in lipid accumulation was not dependent on the presence of lipids, lipoproteins, or PPAR‐γ agonists in the culture medium, nor was it observed with exogenously added apoE. Moreover, we observed that apoE‐transfected cells were more resistant to death induced by serum deprivation, and that these cells underwent more cell divisions than control cells. These results bring new evidence of apoE‐involvement in metabolic disorders at the adipocyte level. J. Cell. Biochem. 106: 608–617, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
4.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. 相似文献
5.
《中国科学:生命科学英文版》2017,(1)
Adequate energy storage is essential for sustaining healthy life.Lipid droplet(LD) is the subcellular organelle that stores energy in the form of neutral lipids and releases fatty acids under energy deficient conditions.Energy storage capacity of LDs is primarily dependent on the sizes of LDs.Enlargement and growth of LDs is controlled by two molecular pathways:neutral lipid synthesis and atypical LD fusion.Shrinkage of LDs is mediated by the degradation of neutral lipids under energy demanding conditions and is controlled by neutral cytosolic Upases and lysosomal acidic Upases.In this review,we summarize recent progress regarding the regulatory pathways and molecular mechanisms that control the sizes and the energy storage capacity of LDs. 相似文献
6.
假丝酵母(俗称念珠菌)是人类重要的条件致病性真菌,可导致人体浅表组织感染,甚至入侵血流引起念珠菌血症和播散性念珠菌病。黏附是念珠菌机会性感染的第1步,该过程受黏附蛋白的精确调控。糖基磷脂酰肌醇锚定细胞壁蛋白(GPI-CWP)家族中有许多成员参与调控念珠菌的黏附。本文就几种重要的念珠菌黏附相关GPI-CWP:凝集样序列(Als)、菌丝壁蛋白1(Hwp1)、上皮细胞黏附素(Epa)、聚苯乙烯黏附增强蛋白1(Eap1)等的致病机制展开综述。 相似文献
8.
9.
The exposure of phosphatidylserine (PS) on the cell surface is a general marker of apoptotic cells. Non-apoptotic PS externalization is induced by several activation stimuli, including engagement of immunoreceptors. Immune cells can also be activated by aggregation of glycosylphosphatidylinositol-anchored proteins (GPI-APs). However, it is unknown whether cell triggering through these proteins, lacking transmembrane and cytoplasmic domains, also leads to PS externalization. Here we show that engagement of GPI-APs in rodent mast cells induces a rapid and reversible externalization of PS by a non-apoptotic mechanism. PS externalization triggered by GPI-AP-specific monoclonal antibodies was dependent on the activity of H(+)-ATP synthase and several other enzymes involved in mast cell signaling but was independent of cell degranulation, free cytoplasmic calcium up-regulation, and a decrease in lipid packing as determined by merocyanine 540 binding. Surprisingly, disruption of actin cytoskeleton by latrunculin B or plasma membrane integrity by methyl-beta-cyclodextrin had opposite effects on PS externalization triggered through GPI-AP or the high affinity IgE receptor. We further show that PS externalization mediated by GPI-APs was also observed in some other cells, and its extent varied with antibodies used. Interestingly, effects of different antibodies on PS externalization were additive, indicating that independent stimuli converge onto a signaling pathways leading to PS externalization. Our findings identify the cell surface PS exposure induced through GPI-AP as a distinct mechanism of cell signaling. Such a mechanism could contribute to "inside-out" signaling in response to pathogens and other external activators and/or to initiation of other functions associated with PS externalization. 相似文献
10.
Darjania L Ichise N Ichikawa S Okamoto T Okuyama H Thompson GA 《Biochemical Society transactions》2000,28(6):725-727
Although glycosylphosphatidylinositol (GPI)-anchored proteins have now been found in several plants, very little is known regarding their metabolism there. This report describes studies of the biosynthesis and turnover of arabinogalactan proteins, a class of abundant GPI-anchored proteins secreted by cultured Arabidopsis cells. 相似文献
11.
Inhibition of lipolysis in rat adipocytes by palmitate, H2O2 and the antidiabetic sulfonylurea drug, glimepiride, has been demonstrated to rely on the upregulated conversion of cAMP to adenosine by enzymes associated with lipid droplets (LD) rather than on cAMP degradation by the insulin-stimulated microsomal phosphodiesterase 3B (Müller, G., Wied, S., Over, S., and Frick, W. (2008) Biochemistry 47, 1259-1273). Here these two enzymes were identified as the glycosylphosphatidylinositol (GPI)-anchored phosphodiesterase, Gce1, and the 5'-nucleotidase, CD73, on basis of the following findings: (i) Photoaffinity labeling with 8-N3-[32P]cAMP and [14C]5'-FSBA of LD from palmitate-, glucose oxidase- and glimepiride-treated, but not insulin-treated and basal, adipocytes led to the identification of 54-kDA cAMP- and 62-kDa AMP-binding proteins. (ii) The amphiphilic proteins were converted into hydrophilic versions and released from the LD by chemical or enzymic treatments specifically cleaving GPI anchors, but resistant toward carbonate extraction. (iii) The cAMP-to-adenosine conversion activity was depleted from the LD by adsorption to (c)AMP-Sepharose. (iv) cAMP-binding to LD was increased upon challenge of the adipocytes with palmitate, glimepiride or glucose oxidase and abrogated by phospholipase C digestion. (v) The 62-kDa AMP-binding protein was labeled with typical GPI anchor constituents and reacted with anti-CD73 antibodies. (vi) Inhibition of the bacterial phosphatidylinitosol-specific phospholipase C or GPI anchor biosynthesis blocked both agent-dependent upregulation and subsequent loss of cAMP-to-adenosine conversion associated with LD and inhibition of lipolysis. (vii) Gce1 and CD73 can be reconstituted into and exchanged between LD in vitro. These data suggest a novel insulin-independent antilipolytic mechanism engaged by palmitate, glimepiride and H2O2 in adipocytes which involves the upregulated expression of a GPI-anchored PDE and 5'-nucleotidase at LD. Their concerted action may ensure degradation of cAMP and inactivation of hormone-sensitive lipase in the vicinity of LD. 相似文献
12.
13.
In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A) is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL, and HSL) has been demonstrated to regulate lipid storage and release in the adipocyte. However, in the absence of protein kinase A (PKA) stimulation (basal state), the lipases (ATGL and HSL) are located mainly in the cytoplasm, and their contribution to basal rates of lipolysis and influence on LD size are poorly understood. In this study, we utilize an adenoviral system to knockdown or overexpress ATGL and HSL in an engineered model system of adipocytes in the presence or absence of Peri A. We are able to demonstrate in our experimental model system that in the basal state, LD size, triglyceride storage, and fatty acid release are mainly influenced by the expression of ATGL. These results demonstrate for the first time the relative contributions of ATGL, HSL, and Peri A on determination of LD size in the absence of PKA stimulation. 相似文献
14.
Elortza F Nühse TS Foster LJ Stensballe A Peck SC Jensen ON 《Molecular & cellular proteomics : MCP》2003,2(12):1261-1270
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains unclear, they have attracted attention because they act as enzymes and receptors in cell adhesion, differentiation, and host-pathogen interactions. GPI-APs may represent potential diagnostic and therapeutic targets in humans and are interesting in plant biotechnology because of their key role in root development. We here present a general mass spectrometry-based proteomic "shave-and-conquer" strategy that specifically targets GPI-APs. Using a combination of biochemical methods, mass spectrometry, and computational sequence analysis we identified six GPI-APs in a Homo sapiens lipid raft-enriched fraction and 44 GPI-APs in an Arabidopsis thaliana membrane preparation, representing the largest experimental dataset of GPI-anchored proteins to date. 相似文献
15.
Heffer-Lauc M Lauc G Nimrichter L Fromholt SE Schnaar RL 《Biochimica et biophysica acta》2005,1686(3):200-208
Sphingolipids, glycosylphosphatidylinositol (GPI)-anchored proteins, and certain signaling molecules segregate from bulk membrane lipids into lateral domains termed lipid rafts, which are often isolated based on their insolubility in cold nonionic detergents. During immunohistological studies of gangliosides, major sphingolipids of the brain, we found that cold Triton X-100 solubility is bidirectional, leading to histological redistribution from gray to white matter. When brain sections were treated with > or =0.25% Triton X-100 at 4 degrees C, ganglioside GD1a, which is normally enriched in gray matter and depleted in white matter, redistributed into white matter tracts. Incubation of brain sections from knockout mice lacking GD1a with wild-type sections in the presence of cold Triton X-100 resulted in GD1a redistribution from wild-type gray matter to knockout white matter. GM1, which is normally enriched in white matter, remained in white matter after cold detergent treatment and did not migrate to knockout mouse brain sections. However, when gray matter gangliosides were enzymatically converted into GM1 in situ, the newly formed GM1 transmigrated to knockout mouse brain sections in the presence of cold detergent. When purified GD1a was added to knockout mouse brain sections in the presence of cold Triton X-100, it preferentially incorporated into white matter tracts. These data demonstrate that brain white matter is a sink for gangliosides, which redistribute from gray matter in the presence of low concentrations of cold Triton X-100. A GPI-anchored protein, Thy-1, also transmigrated from wild-type to Thy-1 knockout mouse brain sections in the presence of detergent at 4 degrees C, although less efficiently than did gangliosides. These data raise technical challenges for using nonionic detergents in certain histological protocols and for isolation of lipid rafts from brain tissue. 相似文献
16.
Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins have very different biosynthetic origin, but they have one thing in common: they are both comprised of a relatively large hydrophilic moiety tethered to a membrane by a relatively small lipid tail. Both gangliosides and GPI-anchored proteins can be actively shed from the membrane of one cell and taken up by other cells by insertion of their lipid anchors into the cell membrane. The process of shedding and uptake of gangliosides and GPI-anchored proteins has been independently discovered in several disciplines during the last few decades, but these discoveries were largely ignored by people working in other areas of science. By bringing together results from these, sometimes very distant disciplines, in this review, we give an overview of current knowledge about shedding and uptake of gangliosides and GPI-anchored proteins. Tumor cells and some pathogens apparently misuse this process for their own advantage, but its real physiological functions remain to be discovered. 相似文献
17.
Glycosylphosphatidylinositol (GPI)-anchored cell wall proteins play an important role in the structure and function of the cell wall in yeast and other fungi. Although the majority of characterized fungal GPI-anchored proteins do in fact localize to the cell wall, some are believed to reside at the plasma membrane and not to traffic significantly to the cell wall. There is evidence suggesting that the amino acids immediately upstream of the site of GPI anchor addition (the omega site) serve as the signal determining whether a GPI protein localizes to the cell wall or to the plasma membrane, although this remains controversial. Here, we examine in detail the functional and biochemical differences between the GPI anchor addition signals of putative cell wall (CW) and plasma membrane (PM) GPI proteins. We find strong evidence for the existence of PM-class and CW-class GPI proteins. We show that the biological function of a GPI-CWP is strongly compromised by changing the GPI anchor signal from a CW-class signal to a PM-class signal. Biochemically, this abrogation of function corresponds to a change in the protein from a cell wall form to a membrane form. To understand better the basis for the difference between the two classes of proteins, we mutated the amino acids upstream of the omega site in a GPI-PM protein and selected mutant proteins that were now localized to the cell wall. We were also able to design simple amino acid mutations in a GPI-CW protein that efficiently redirected the protein to the plasma membrane. These studies make clear that different GPI anchor sequences can have dramatic effects on localization of the proteins and help to define the GPI anchor addition signal sequences that distinguish the PM-class and CW-class GPI proteins. 相似文献
18.
Nelson D. Horseman Cindy L. Will 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1984,154(3):237-242
Summary The protein components involved in prolactin-induced lipid sequestration in crop tissue of pigeons (Columba livia) have been investigated from regulatory and structural viewpoints. The key enzyme necessary for lipogenesis, fatty acid synthetase
(FAS), was not detected by a radiochemical assay which readily detects FAS in liver tissue. Therefore, lipid storage in crop
involves sequestration rather than de novo synthesis in the crop per se. Two polypeptides (crop milk polypeptides, CMP) having
apparent molecular weights of 58,000 (CMP 58) and 50,500 (CMP 50.5) have been isolated from prolactin-induced crop lipid globules
(Fig. 1). Structural studies determining disulfide linkage (Fig. 2), protease sensitivity (Fig. 3) and antigenic reactivity
(Fig. 4) indicate that CMP 50.5 is located extrinsic to the lipid globules, whereas CMP 58 is by and large intrinsic to the
matrix of the lipid globules. Prolactin indudes synthesis of CMP 58 and 50.5 to a level which is three times higher than can
be accounted for by general protein synthesis induction and represents about 2.5% of protein synthesis in the induced crop. 相似文献
19.
Lipid droplets in adipocytes serve as the principal long-term energy storage depot of animals. There is increasing recognition that lipid droplets are not merely a static neutral lipid storage site, but in fact dynamic and multi-functional organelles. Structurally, lipid droplet consists of a neutral lipid core surrounded by a phospholipid monolayer and proteins embedded in or bound to the phospholipid layer. Proteins on the surface of lipid droplets are crucial to droplet structure and dynamics. To understand the lipid droplet-associated proteome of primary adipocyte with a large central lipid droplet, lipid droplets of white adipose tissue from C57BL/6 mice were isolated. And the proteins were extracted and analyzed by liquid chromatography coupled with tandem mass spectrometry. A total of 193 proteins including 73 previously unreported proteins were identified. Furthermore, the isotope-coded affinity tags (ICAT) was used to compare the difference of lipid droplet-associated proteomes between the normal lean and the high-fat diet-induced obese C57BL/6 mice. Of 23 proteins quantified by ICAT analysis, 3 proteins were up-regulated and 4 proteins were down-regulated in the lipid droplets of adipose tissue from the obese mice. Importantly, two structural proteins of lipid droplets, perilipin A and vimentin, were greatly reduced in the lipid droplets of the adipose tissue from the obese mice, implicating reduced protein machinery for lipid droplet stability. 相似文献
20.
Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. 下载免费PDF全文
The present study is an application of an approach recently developed by the authors for describing the structure of the hydrocarbon chains of lipid-bilayer membranes (LBMs) around embedded protein inclusions ( Biophys. J. 79:2867-2879). The approach is based on statistical mechanical integral equation theories developed for the study of dense liquids. First, the configurations extracted from molecular dynamics simulations of pure LBMs are used to extract the lateral density-density response function. Different pure LBMs composed of different lipid molecules were considered: dioleoyl phosphatidylcholine (DOPC), palmitoyl-oleoyl phosphatidylcholine (POPC), dipalmitoyl phosphatidylcholine (DPPC), and dimyristoyl phosphatidylcholine (DMPC). The results for the lateral density-density response function was then used as input in the integral equation theory. Numerical calculations were performed for protein inclusions of three different sizes. For the sake of simplicity, protein inclusions are represented as hard smooth cylinders excluding the lipid hydrocarbon core from a small cylinder of 2.5 A radius, corresponding roughly to one aliphatic chain, a medium cylinder of 5 A radius, corresponding to one alpha-helix, and a larger cylinder of 9 A radius, representing a small protein such as the gramicidin channel. The lipid-mediated interaction between protein inclusions was calculated using a closed-form expression for the configuration-dependent free energy. This interaction was found to be repulsive at intermediate range and attractive at short range for two small cylinders in POPC, DPPC, and DMPC bilayers, whereas it oscillates between attractive and repulsive values in DOPC bilayers. For medium size cylinders, it is again repulsive at intermediate range and attractive at short range, but for every model LBM considered here. In the case of a large cylinder, the lipid-mediated interaction was shown to be repulsive for both short and long ranges for the DOPC, POPC, and DPPC bilayers, whereas it is again repulsive and attractive for DMPC bilayers. The results indicate that the packing of the hydrocarbon chains around protein inclusions in LBMs gives rise to a generic (i.e., nonspecific) lipid-mediated interaction which favors the association of two alpha-helices and depends on the lipid composition of the membrane. 相似文献