共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production 总被引:1,自引:0,他引:1
The aim of this work is to study the catalyst prepared by glucose-starch mixture. Assessment experiments showed that solid acid behaved the highest esterification activity when glucose and corn powder were mixed at ratio of 1:1, carbonized at 400 °C for 75 min and sulfonated with concentrated H2SO4 (98%) at 150 °C for 5 h. The catalyst was characterized by acid activity measurement, XPS, TEM and FT-IR. The results indicated that solid acid composed of CS0.073O0.541 has both Lewis acid sites and Broˇnsted acid sites caused by SO3H and COOH. The conversions of oleic acid esterification and triolein transesterification are 96% and 60%, respectively. Catalyst for biodiesel production from waste cottonseed oil containing high free fatty acid (FFA 55.2 wt.%) afforded the methyl ester yield of about 90% after 12 h. The catalyst deactivated gradually after recycles usage, but it could be regenerated by H2SO4 treatment. 相似文献
2.
Alkali hydrothermal experiments with glycolaldehyde were carried out at 300 degrees C. Glycolaldehyde was converted into lactic acid in a yield of 28% based on the starting carbon mass of glycolaldehyde. A conversion pathway for glycolaldehyde into lactic acid is proposed and our results suggest that the pathway via glycolaldehyde is also important in the conversion of glucose into lactic acid. 相似文献
3.
Joana M. Dias Maria C.M. Alvim-Ferraz Manuel F. Almeida 《Bioresource technology》2009,100(24):6355-6361
The objective of the present work was: (i) to enable biodiesel production from acid waste lard; (ii) to study the esterification reaction as possible pre-treatment at different temperatures, catalyst amount and reaction times; (iii) to evaluate biodiesel quality according to EN 14214 after basic transesterification of the pre-treated fat; and (iv) to predict the impact of using such waste as raw material in mixture with soybean oil. Temperature and catalyst amount were the most important reaction conditions which mostly affected biodiesel quality, namely viscosity and purity. The selected pre-treatment conditions were 65 °C, 2.0 wt% H2SO4 and 5 h, which allowed obtaining a product with a viscosity of 4.81 mm2 s−1 and a purity of 99.6 wt%. The proposed pre-treatment was effective to enable acid wastes as single raw materials for biodiesel production with acceptable quality; however, low yields were obtained (65 wt%). Alkali transesterification of a mixture of waste lard and soybean oil resulted in a product with a purity of 99.8 wt% and a yield of 77.8 wt%, showing that blending might be an interesting alternative to recycle such wastes. Also, because in addition to using conventional and relatively economical processes, some biodiesel properties depending on the raw material composition (such as the iodine value) might even be improved. 相似文献
4.
Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits 总被引:2,自引:0,他引:2
Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the “conventional” processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria. 相似文献
5.
Al(HSO4)3 heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl3. This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220 °C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO3H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751. 相似文献
6.
Heteropolysaccharides from lactic acid bacteria 总被引:35,自引:0,他引:35
Microbial exopolysaccharides are biothickeners that can be added to a wide variety of food products, where they serve as viscosifying, stabilizing, emulsifying or gelling agents. Numerous exopolysaccharides with different composition, size and structure are synthesized by lactic acid bacteria. The heteropolysaccharides from both mesophilic and thermophilic lactic acid bacteria have received renewed interest recently. Structural analysis combined with rheological studies revealed that there is considerable variation among the different exopolysaccharides; some of them exhibit remarkable thickening and shear-thinning properties and display high intrinsic viscosities. Hence, several slime-producing lactic acid bacterium strains and their biopolymers have interesting functional and technological properties, which may be exploited towards different products, in particular, natural fermented milks. However, information on the biosynthesis, molecular organization and fermentation conditions is rather scarce, and the kinetics of exopolysaccharide formation are poorly described. Moreover, the production of exopolysaccharides is low and often unstable, and their downstream processing is difficult. This review particularly deals with microbiological, biochemical and technological aspects of heteropolysaccharides from, and their production by, lactic acid bacteria. The chemical composition and structure, the biosynthesis, genetics and molecular organization, the nutritional and physiological aspects, the process technology, and both food additive and in situ applications (in particular in yogurt) of heterotype exopolysaccharides from lactic acid bacteria are described. Where appropriate, suggestions are made for strain improvement, enhanced productivities and advanced modification and production processes (involving enzyme and/or fermentation technology) that may contribute to the economic soundness of applications with this promising group of biomolecules. 相似文献
7.
Production of lactic acid from paper sludge was studied using thermophilic Bacillus coagulan strains 36D1 and P4-102B. More than 80% of lactic acid yield and more than 87% of cellulose conversion were achieved using both strains without any pH control due to the buffering effect of CaCO3 in paper sludge. The addition of CaCO3 as the buffering reagent in rich medium increased lactic acid yield but had little effect on cellulose conversion; when lean medium was utilized, the addition of CaCO3 had little effect on either cellulose conversion or lactic acid yield. Lowering the fermentation temperature lowered lactic acid yield but increased cellulose conversion. Semi-continuous simultaneous saccharification and co-fermentation (SSCF) using medium containing 100 g/L cellulose equivalent paper sludge without pH control was carried out in serum bottles for up to 1000 h. When rich medium was utilized, the average lactic acid concentrations in steady state for strains 36D1 and P4-102B were 92 g/L and 91.7 g/L, respectively, and lactic acid yields were 77% and 78%. The average lactic acid concentrations produced using semi-continuous SSCF with lean medium were 77.5 g/L and 77.0 g/L for strains 36D1 and P4-102B, respectively, and lactic acid yields were 72% and 75%. The productivities at steady state were 0.96 g/L/h and 0.82 g/L/h for both strains in rich medium and lean medium, respectively. Our data support that B. coagulan strains 36D1 and P4-102B are promising for converting paper sludge to lactic acid via SSCF. 相似文献
8.
The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability. 相似文献
9.
Biodiesel production from rubber seed oil using poly (sodium acrylate) supporting NaOH as a water-resistant catalyst 总被引:1,自引:0,他引:1
Poly (sodium acrylate) supporting NaOH (NaOH/NaPAA) was prepared by in situ polymerization of aqueous solution of acrylic acid with an over-neutralization by adding excess of NaOH. NaOH/NaPAA presented a promising selectivity for water absorbency and good water retention with negligible swelling capacity in the organic solvents of methanol, glycerol, rubber seed oil methyl esters, and rubber seed oil. NaOH/NaPAA catalysts showed a basic strength of 15.0 < H_ < 18.4 and their basicity increased with the increase of the NaOH loading amount. NaOH/NaPAA catalysts exhibited almost the same catalytic activity in the transesterification of rubber seed oil with methanol under the optimized reaction conditions compared to conventional homogeneous NaOH catalyst. Furthermore, the functional absorbent/catalyst system presented a good water resistance in the transesterification which retained high catalytic activity when a water concentration in the reaction system was less than 2 wt.%. 相似文献
10.
Responses of lactic acid bacteria to oxygen 总被引:30,自引:0,他引:30
Seamus Condon 《FEMS microbiology letters》1987,46(3):269-280
Abstract A small number of flavoprotein oxidase enzymes are responsible for the direct interaction of lactic acid bacteria (LAB) with oxygen; hydrogen peroxide or water are produced in these reactions. In some cultures exposed to oxygen, hydrogen peroxide accumulates to inhibitory levels.
Through these oxidase enzymes and NADH peroxidase, O2 and H2 O2 can accept electrons from sugar metabolism, and thus have a sparing effect on the use of metabolic intermediates, such as pyruvate or acetaldehyde, as electron acceptors. Consequently, sugar metabolism in aerated cultures of LAB can be substantially different from that in unaerated cultures. Energy and biomass yields, end-products of sugar metabolism and the range of substrates which can be metabolised are affected.
Lactic acid bacteria exhibit an inducible oxidative stress response when exposed to sublethal levels of H2 O2 . This response protects them if they are subsequently exposed to lethal concentrations of H2 O2 . The effect appears to be related to other stress responses such as heat-shock and is similar, in some but not all respects, to that previously reported for enteric bacteria. 相似文献
Through these oxidase enzymes and NADH peroxidase, O
Lactic acid bacteria exhibit an inducible oxidative stress response when exposed to sublethal levels of H
11.
A total of 57 lactic acid bacteria were isolated from the vaginal secretions of 259 patients. Of these strains, 37 were isolated
from patients attending pre-natal clinics and the remaining strains from patients attending post-natal clinics. The strains
were identified by using simple physiological and biochemical tests and their phenotypic relatedness determined by numerical
analysis of total soluble cell protein patterns. The genotypic relatedness of representative strains selected from each of
the protein profile clusters was determined by numerical analysis of the DNA banding patterns obtained from RAPD-PCR. The
majority of lactobacilli isolated belonged to the species Lactobacillus pentosus, Lactobacillus fermentum and Enterococcus faecium. A few strains of Lactobacillus plantarum and Weissella viridescens were also isolated. One strain, TV 1029, grouped into the same protein profile cluster as E. faecium, but revealed a DNA banding pattern closer related to Enterococcus faecalis. This is the first report of W. viridescens associated with the human vagina.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
12.
Fungal infection represents a severe problem that decreases the yield and market value of fruit crops. The use of fungicides is a conventional method to control infections but it is associated with disadvantages, such as hazardous impact on public health, environmental contamination, resistance development among pathogens and high cost of agrochemicals. Biological control is an alternative approach for the treatment of fungal infections. The species of Bacillus, Pseudomonas, Enterobacter, Pantoea, Burkholderia, Lysobacter and Serratia have been successfully used in the control of fungal infections. The mechanisms involved in biocontrol are hyperparasitism or predation, production of antibiotics, lytic enzymes and induction of host resistance. Lactic acid bacteria have been used as biopreservative organisms in food and feed systems. They are a cluster of Gram-positive bacteria and include species of the genera Enterococcus, Lactobacillus, Leuconostoc, Lactococcus and Pediococcus. The ability to produce several antibacterial and antifungal substances confers biopreservation potential to lactic acid bacteria. Many have ‘generally regarded as safe’ status and are considered as safe from both human and environmental points of view. Their isolation is reported from vegetables, aerial plant surfaces, pickled cabbage, grass silage, malted cereals and also from soil. They produce antifungal substances, such as cyclic dipeptides, proteinaceous compounds, organic acids, fatty acids and reuterin. The biocontrol potential of lactic acid bacteria is demonstrated in the prevention of fungal infections of fruits, such as apples and grapes. Thus, living cells or product formulations of antifungal lactic acid bacteria may be prepared and used as an alternative biocontrol technology. 相似文献
13.
Rheofermentometer assays were used to characterize the leavening of sour-doughs produced using species of lactic acid bacteria (LAB) and yeasts, alone or in combination. Saccharomyces cerevisiae 141 produced the most CO2 and ethanol whereas S. exiguus M14 and Lactobacillus brevis subsp. lindneri CB1 contributed poorly to leavening and gave sour-doughs without porosity. In comparison with that seen in sour-dough produced with yeast alone, yeast fermentation with heterofermentative LAB present was faster whereas that with homofermentative LAB (L. plantarum DC400, L. farciminis CF3) present was slower and produced more CO2. Combining L. brevis subsp. lindneri CB1 with S. cerevisiae 141 decreased bacterial cell numbers and souring activity. However, addition of fructose to the sour-dough overcame these problems as well as activating S. cerevisiae 141.The authors are with the Institute of Dairy Microbiology, Faculty of Agriculture, University of Perugia, S. Costanzo, 06126 Perugia, Italy 相似文献
14.
Technological and economic potential of poly(lactic acid) and lactic acid derivatives 总被引:24,自引:0,他引:24
Rathin Datta Shih-Perng Tsai Patrick Bonsignore Seung-Hyeon Moon James R. Frank 《FEMS microbiology reviews》1995,16(2-3):221-231
Abstract: Lactic acid has been an intermediate-volume specialty chemical (world production ∼ 40,000 tons/yr) used in a wide range of food processing and industrial applications. Lactic acid has the potential of becoming a very large volume, commodity-chemical intermediate produced from renewable carbohydrates for use as feedstocks for biodegradable polymers, oxygenated chemicals, plant growth regulators, environmentally friendly 'green' solvents, and specialty chemical intermediates. The recent announcements of new development-scale plants for producing lactic acid and polymer intermediates by major U.S. companies, such as Cargill, Ecochem (DuPont/ConAgra), and Archer Daniels Midland, attest to this potential.
In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of lactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. Thus, the emerging technologies can use environmentally sound processes to produce environmentally useful products from lactic acid. The process economics of some of these processes and products can also be quite attractive. In this paper, the recent technical advances in lactic and polyactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed. 相似文献
In the past, efficient and economical technologies for the recovery and purification of lactic acid from crude fermentation broths and the conversion of lactic acid to the chemical or polymer intermediates had been the key technology impediments and main process cost centers. The development and deployment of novel separations technologies, such as electrodialysis (ED) with bipolar membranes, extractive distillations integrated with fermentation, and chemical conversion, can enable low-cost production with continuous processes in large-scale operations. The use of bipolar ED can virtually eliminate the salt or gypsum waste produced in the current lactic acid processes. Thus, the emerging technologies can use environmentally sound processes to produce environmentally useful products from lactic acid. The process economics of some of these processes and products can also be quite attractive. In this paper, the recent technical advances in lactic and polyactic acid processes are discussed. The economic potential and manufacturing cost estimates of several products and process options are presented. The technical accomplishments at Argonne National Laboratory (ANL) and the future directions of this program at ANL are discussed. 相似文献
15.
In the recent decades biotechnological production of lactic acid has gained a prime position in the industries as it is cost effective and eco-friendly. Lactic acid is a versatile chemical having a wide range of applications in food, pharmaceutical, leather and textile industries and as chemical feedstock for so many other chemicals. It also functions as the monomer for the biodegradable plastic. Biotechnological production is advantageous over chemical synthesis in that we can utilize cheap raw materials such as agro-industrial byproducts and can selectively produce the stereo isomers in an economic way. Simultaneous saccharification and fermentation can replace the classical double step fermentation by the saccharification of starchy or cellulosic biomass and conversion to lactic acid concurrently by adding inoculum along with the substrate degrading enzymes. It not only reduces the cost of production by avoiding high energy consuming biomass saccharification, but also provides the higher productivity than the single step conversion by the providing adequate sugar release. 相似文献
16.
Michael J. Gasson 《FEMS microbiology reviews》1993,12(1-3):3-19
Abstract: Current activities and future prospects for the biotechnology of lactic acid bacteria are reviewed. Genetic engineering technology, including advances and limitations of plasmid vectors and chromosomal integration strategies are discussed together with the status of gene expression and the importance of in vivo gene transfer systems and transposition. Areas of biotechnological application considered include proteolysis and flavour generation, bacteriophage resistance, antimicrobials, metabolic engineering and the possible uses of lactic acid bacteria in relation to health. 相似文献
17.
[目的]对从酸马奶中分离出来的10株乳酸菌进行鉴定和生理生化特性研究,为工业生产筛选特性优良的菌种.[方法]通过形态学观察、生理生化特性、分子生物学特性及其对致病菌抑制作用的研究对其进行鉴定,并筛选特性优良菌株.[结果]10株乳酸菌分别为2株Lactobacillus plantarum、2株Enterococcus villorum、2株Enterococcus dispar、3株Enterococcus durans和1株Enterococcus raffinosus;其对Staphylococcus aureus、Escherichia coli和Enteritidis bacillus有不同程度的抑制作用.[结论]菌株HZ24、HZ25具有良好的生物学特性和益生功能,可以应用到食品发酵工业生产中. 相似文献
18.
产生物胺乳酸菌的筛查与检测 总被引:2,自引:0,他引:2
目的对上海市场上食品和药品中分离出的20株乳杆菌,13株链球菌,3株乳球菌和3株肠球菌的产生物胺能力进行检测,以揭示其潜在的安全性问题。方法检测的生物胺共包括6种:分别为酪胺、精胺、尸胺、组胺、腐胺和色胺。利用添加了前体氨基酸的氨基酸脱羧酶筛选培养基对各菌株的产胺能力进行初筛,通过培养基中指示剂的颜色变化判定产胺能力。结果在检测的39株菌中,8株菌具有产酪胺的能力,7株菌具有产精胺的能力,1株菌具有产组胺的能力,1株菌具有产腐胺的能力。尤其是精胺和酪胺的产量较为引人关注。结论生物胺的危害水平取决于个体解毒的能力,但在筛选食品药品用菌株时应运用规范的方法来检测其产生物胺的能力,以保障相应食品药品的安全问题。 相似文献
19.
Lactic acid, the most important hydroxycarboxylic acid, is now commercially produced by the fermentation of sugars present in biomass. In addition to its use in the synthesis of biodegradable polymers, lactic acid can be regarded as a feedstock for the green chemistry of the future. Different potentially useful chemicals such as pyruvic acid, acrylic acid, 1,2-propanediol, and lactate ester can be produced from lactic acid via chemical and biotechnological routes. Here, we reviewed the current status of the production of potentially valuable chemicals from lactic acid via biotechnological routes. Although some of the reactions described in this review article are still not applicable at current stage, due to their “greener” properties, biotechnological processes for the production of lactic acid derivatives might replace the chemical routes in the future. 相似文献
20.
Lactic acid promises to be an important commodity chemical in the future as a monomer for the production of biodegradable
polylactic acid (PLA). As the demand for lactic acid increases, the need to explore alternative feedstock sources and process
options that are inexpensive and efficient is bound to gain importance. This paper reports the results of a study of the
production of lactic acid from wastepaper as a representative cellulosic feedstock, using a batch, bench-scale simultaneous
saccharification and fermentation (SSF) process. The effect on process performance of operating parameters such as pH, temperature,
enzyme loading, solids concentration, and enzyme preparation has been examined. A lactic acid product yield of 84% of theoretical
was achieved at a solids loading of 5%, using 25 filter paper units (FPU) of cellulase per gram of cellulose, at 45°C and
pH 5.0. The pH and temperature of operation have been selected to achieve good performance of both the cellulase and the
microoganism in the SSF process. Our studies show that a feedstock such as wastepaper offers considerable promise and opportunity
in the future for development of a biomass-based process for lactic acid production.
Received 09 January 1996/ Accepted in revised form 22 August 1996 相似文献