首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang X  Li L  McNaughton PA 《Neuron》2008,59(3):450-461
The ability of vertebrates to detect and avoid damaging extremes of temperature depends on activation of ion channels belonging to the thermo-TRP family. Injury or inflammation causes the release of inflammatory mediators which lower the threshold for detection of painful levels of heat, a process known as heat hyperalgesia. These inflammatory mediators act by at least three distinct intracellular signaling pathways. Here, we show that modulation of the sensitivity of the heat-activated ion channel TRPV1 by the protein kinases PKA and PKC and by the phosphatase calcineurin depends on the formation of a signaling complex between these enzymes, the scaffolding protein AKAP79/150 and TRPV1. We identify a critical region in the TRPV1 C-terminal which mediates binding of AKAP79/150. If binding is prevented, then sensitization by both bradykinin and PGE(2) is abrogated. AKAP79/150 is therefore a final common element in heat hyperalgesia, on which the effects of multiple proinflammatory mediators converge.  相似文献   

2.
The yeast Set1-complex catalyzes histone H3 lysine 4 (H3K4) methylation. Using N-terminal Edman sequencing, we determined that 50% of H3K4 is methylated and consists of roughly equal amounts of mono, di and tri-methylated H3K4. We further show that loss of either Paf1 of the Paf1 elongation complex, or ubiquitination of histone H2B, has only a modest effect on bulk histone mono-methylation at H3K4. Despite the fact that Set1 recruitment decreases in paf1delta cells, loss of Paf1 results in an increase of H3K4 mono-methylation at the 5' coding region of active genes, suggesting a Paf1-independent targeting of Set1. In contrast to Paf1 inactivation, deleting RTF1 affects H3K4 mono-methylation at the 3' coding region of active genes and results in a decrease of global H3K4 mono-methylation. Our results indicate that the requirements for mono-methylation are distinct from those for H3K4 di and tri-methylation, and point to differences among members of the Paf1 complex in the regulation of H3K4 methylation.  相似文献   

3.
Autoimmune myocarditis does not require B cells for antigen presentation.   总被引:2,自引:0,他引:2  
T cells constitute the pathogenic effector cell population in autoimmune myocarditis in BALB/c mice. Using mice rendered deficient for B cells by a targeted disruption to the IgM transmembrane domain or by treatment with anti-IgM Ab from birth, we asked whether B cells are a critical APC in the induction of autoimmune myocarditis. B cell-deficient mice immunized with cardiac myosin develop myocarditis comparable in incidence and severity to that in wild-type mice, suggesting that autoreactive T cells that cause myocarditis in BALB/c mice are activated by macrophages or dendritic cells. Since it does not appear that presentation of cryptic epitopes is critical for the breakdown of self tolerance, potentially pathogenic T cells recognizing dominant myosin epitopes must have escaped tolerization. Either anatomic sequestration of cardiac myosin peptide-MHC complexes or subthreshold presentation of cardiac myosin peptides by conventional APC can explain the survival of these autoreactive T cells.  相似文献   

4.
Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.  相似文献   

5.
EMBO J (2012) 31 20, 3991–4004 doi:10.1038/emboj.2012.244; published online August312012Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.Insulin secretion is a key component in the regulation of glucose homeostasis. The initiation of glucose-stimulated insulin secretion (GSIS) is coordinated by numerous protein phosphorylation and dephosphorylation events in the β cell (Jones and Persaud, 1998). PKA and protein phosphatase 2B (PP2B or calcineurin—a Ca2+/calmodulin-dependent enzyme) are examples of enzymes that can influence the release of insulin. The combined effects of these enzymes propagate GSIS, which is mediated intracellularly via an increase in ATP concentration, Ca2+ influx via the voltage-dependent Ca2+ channel (VDCC) and cyclic AMP (cAMP) signalling. At the same time, these enzymes can also regulate glucose usage (e.g., via glycogen synthase) in insulin-sensitive tissues such as the skeletal muscle.cAMP signalling serves to potentiate GSIS via either (1) PKA-dependent or (2) PKA-independent mechanisms (involving cAMP-binding protein Epac2A (exchange protein directly activated by cAMP 2)). A-kinase anchoring protein (AKAP) belongs to a group of regulatory proteins that interacts with cAMP-dependent PKA (Pidoux and Tasken, 2010; Welch et al, 2010). It can regulate the differential usage of kinase versus phosphatase, thereby controlling metabolic outcomes in specific tissues. Although it is known that PKA phosphorylation regulates β cell physiology, the role of such anchoring proteins is less clear (Faruque et al, 2009; Lester et al, 2001). For example, while disruption of the AKAP–PKA interaction has been reported to decrease insulin secretion (Lester et al, 1997), the specific regulatory protein that anchors PKA has yet to be identified.In this study, Hinke et al (2012) sought to identify the specific anchoring protein that tethers PKA, and to elucidate its function. Two AKAP proteins, namely, AKAP150 and AKAP220 were first shortlisted from an overlay assay used to detect RII (regulatory subunit of PKA) binding proteins. Subsequently, only AKAP150 was found to be important for nutrient-stimulated insulin secretion. Mice with a global knockout of AKAP150 (AKAP150KO) exhibited insulin secretory defects. AKAP150 binds to and regulates the phosphorylation-dependent VDCC. Thus, these AKAP150KO mice exhibited decreased basal Ca2+ current and glucose-stimulated Ca2+ influx in isolated β cells. One reason for the decrease in Ca2+ current could be attributed to a mislocation of its binding partner PP2B (discussed below). Glucose-stimulated cAMP fluctuation which is necessary for insulin secretion (Dyachok et al, 2008) was also abolished in AKAP150KO mice. Therefore, AKAP150KO mice exhibit an insulin secretory defect due to multiple impairments including (1) decreased Ca2+ influx and (2) defective cAMP production.Surprisingly, while the authors report that global AKAP150KO mice secrete less insulin, the skeletal muscle, an insulin-sensitive peripheral tissue, exhibited improved blood glucose clearance likely due to increased phosphorylation of IRS-1 and Akt/PKB, and activation of AMPK that resulted in improved insulin sensitivity. On the other hand, β cell-specific AKAP150KO mice secrete less insulin upon glucose stimulation despite increased insulin content in the β cell that occurs as an adaptation to the impaired glucose tolerance. These mice clearly exhibited an impaired glucose tolerance that is due to defective insulin secretion because they do not exhibit an increase in insulin sensitivity. Together, these data indicate that the skeletal muscle selectively adapts to the global absence of AKAP150 to compensate for the decrease in insulin in the body. Notably, AKAP150 is also expressed in the liver but does not exhibit compensatory effects while AKAP150 is not expressed in the adipose tissue.AKAP150 can anchor numerous enzymes with different metabolic activities. For instance, it binds PKA and PP2B, two enzymes with opposing functions, to the cell surface membrane. Hinke et al (2012) further investigated the impact of disrupting specific binding partners of AKAP150. Unexpectedly, AKAP150Δ36 mice that lack residues 705–724 and therefore cannot bind PKA exclusively are effectively metabolically normal. It is thus surprising that the anchoring of PKA to AKAP150 is not necessary for proper insulin release although this interaction is important in other cellular systems (Lu et al, 2008, 2011). AKAP150ΔPIX mice lacking residues 655–661 and thus unable to tether to PP2B at a seven-residue PIxIxIT motif demonstrate the same metabolic phenotype as global AKAP150KO mice. This suggests that AKAP150 is critical for tethering PP2B, and that PP2B is the key molecule necessary for insulin secretion in β cells. PP2B is also a determinant of the metabolic phenotypes such as improved insulin sensitivity and glucose handling upon loss of anchorage of PP2B.Overall, Hinke et al (2012) used complementary in vivo approaches including animal physiology, and in vitro islet culture and live-cell imaging to demonstrate the importance of the kinase/phosphatase anchoring protein AKAP150 in regulating nutrient-stimulated insulin secretion and modulating glucose homeostasis in mice (Figure 1). However, it is likely that there are AKAP150-independent mechanisms regulating insulin secretion since islets from AKAP150KO mice continued to respond to glucose stimulation and secrete insulin in both static and dynamic conditions, albeit at lower levels compared to wild-type mice. Importantly, the authors also identified AKAP150 tethering to PP2B as a key molecular event that regulates insulin secretion and glucose homeostasis (Figure 1). Thus, targeting the AKAP150–PP2B interface and the PIxIxIT motif could be therapeutically useful for increasing insulin sensitivity in patients with diabetes and metabolic syndromes. This could involve designing molecules or chemical compounds to bind the motif and block interaction between AKAP150 and PP2B. In parallel, the safety of systemic blockade of this interaction needs to be ascertained. Alternatively, skeletal muscle-specific AKAP150ΔPIX mice could be generated to determine if the metabolic phenotype is similar to global AKAP150ΔPIX mice. Should this be the case, then localized pharmacological blockade of AKAP150–PP2B interaction could be considered.Open in a separate windowFigure 1AKAP150 tethered to PP2B at a seven-residue PIxIxIT motif mediates nutrient-stimulated insulin secretion and glucose homeostasis. Both global AKAP150KO and AKAP150ΔPIX (AKAP150-PP2B binding abolished) mice exhibit insulin secretory defects, enhanced insulin sensitivity in skeletal muscle and overall improved glucose tolerance. This infers the importance of AKAP150-PP2B tethering for glucose homeostasis. ‘Tick'' indicates an increase or improvement. ‘Cross'' indicates a defect or impairment. ‘Equal sign'' indicates no change or no effect. Questions emerging from this study are highlighted in red.Several issues worth pursuing include (1) determining the differential adaptive response of the skeletal muscle versus the liver to alterations in insulin sensitivity in global AKAP150KO mice, (2) further investigating the functional relevance of AKAP150 tethering to PKA (by generating β cell-specific AKAP150Δ36 mice) as there is probably a biological rationale for their interaction, (3) exploring whether AKAP150-related or other proteins are expressed and act in different adipose tissue depots, (4) determining whether AKAP150 acts in a similar manner in ‘human'' skeletal muscle and β cells, and (5) examining if polymorphisms in human genes that encode AKAP150 tethering proteins are linked to disorders of glucose metabolism.  相似文献   

6.
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.  相似文献   

7.
We explore the roles of gibberellin (GA) signaling genes SLEEPY1 (SLY1) and RGA-LIKE2 (RGL2) in regulation of seed germination in Arabidopsis thaliana, a plant in which the hormone GA is required for seed germination. Seed germination failure in the GA biosynthesis mutant ga1-3 is rescued by GA and by mutations in the DELLA gene RGL2, suggesting that RGL2 represses seed germination. RGL2 protein disappears before wild-type seed germination, consistent with the model that GA stimulates germination by causing the SCF(SLY1) E3 ubiquitin ligase complex to trigger ubiquitination and destruction of RGL2. Unlike ga1-3, the GA-insensitive sly1 mutants show variable seed dormancy. Seed lots with high seed dormancy after-ripened slowly, with stronger alleles requiring more time. We expected that if RGL2 negatively controls seed germination, sly1 mutant seeds that germinate well should accumulate lower RGL2 levels than those failing to germinate. Surprisingly, RGL2 accumulated at high levels even in after-ripened sly1 mutant seeds with 100% germination, suggesting that RGL2 disappearance is not a prerequisite for seed germination in the sly1 background. Without GA, several GA-induced genes show increased accumulation in sly1 seeds compared with ga1-3. It is possible that the RGL2 repressor of seed germination is inactivated by after-ripening of sly1 mutant seeds.  相似文献   

8.
B cell stimulatory factor-1 (BSF-1) acts on resting B cells to increase expression of class II major histocompatibility complex (MHC) molecules and to prepare for more prompt entry into S phase in response to anti-IgM and lipopolysaccharide. It also acts as a costimulant, with low concentrations of anti-IgM, to cause resting B cells to synthesize DNA. Unlike anti-IgM, BSF-1 does not cause elevation in inositol phospholipid metabolism or in concentration of intracellular free calcium, nor does it enhance such biochemical responses to anti-IgM. Furthermore, increased expression of class II MHC molecules to BSF-1 is observed when essentially all extracellular calcium is chelated by EGTA, whereas lower concentrations of EGTA completely inhibit increases in class II molecules in response to anti-IgM. These results indicate that BSF-1 effects on resting B cells are not mediated by the inositol phospholipid metabolic pathway.  相似文献   

9.
Although structurally similar to pancreatic lipase (PL), the key enzyme of intestinal fat digestion, pancreatic lipase-related protein type 2 (PLRP2) differs from PL in certain functional properties. Notably, PLRP2 has a broader substrate specificity than PL, and unlike that of PL, its activity is not restored by colipase in the presence of bile salts. In the studies presented here, the activation mechanism of horse PLRP2 was studied through active site-directed inhibition experiments, and the results demonstrate fundamental differences with that of PL. The opening of the horse PLRP2 flap occurs as soon as bile salt monomers are present, is accelerated in the presence of micelles, and does not require the presence of colipase. Moreover, in contrast to PL, horse PLRP2 is able to directly interact with a bile salt micelle to form an active binary complex, without the micelle being presented by colipase, as evidenced by molecular sieving experiments. These findings, together with the sensitivity of the horse PLRP2 flap to partial proteolysis, are indicative of a higher flexibility of the flap of horse PLRP2 relative to PL. From these results, it can be concluded that PLRP2 can adopt an active conformation in the intestine, which could be important for the further understanding of the physiological role of PLRP2. Finally, this work emphasizes the essential role of colipase in lipase catalysis at the lipid-water interface in the presence of bile.  相似文献   

10.
The Aurora kinases comprise an evolutionarily conserved protein family that is required for a variety of cell division events, including spindle assembly, chromosome segregation, and cytokinesis. Emerging evidence suggests that once phosphorylated, a subset of Aurora substrates can enhance Aurora kinase activity. Our previous work revealed that the Caenorhabditis elegans Tousled-like kinase TLK-1 is a substrate and activator of the AIR-2 Aurora B kinase in vitro and that partial loss of TLK-1 enhances the mitotic defects of an air-2 mutant. However, given that these experiments were performed in vitro and with partial loss of function alleles in vivo, a necessary step forward in our understanding of the relationship between the Aurora B and Tousled kinases is to prove that TLK-1 expression is sufficient for Aurora B activation in vivo. Here, we report that heterologous expression of wild-type and kinase-inactive forms of TLK-1 suppresses the lethality of temperature-sensitive mutants of the yeast Aurora B kinase Ipl1. Moreover, kinase-dead TLK-1 associates with and augments the activity of Ipl1 in vivo. Together, these results provide critical and compelling evidence that Tousled has a bona fide kinase-independent role in the activation of Aurora B kinases in vivo.  相似文献   

11.
Activation of NF-kappaB by the pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) requires the IkappaB kinase (IKK) complex, which contains two kinases named IKKalpha and IKKbeta and a critical regulatory subunit named NEMO. Although we have previously demonstrated that NEMO associates with both IKKs, genetic studies reveal that only its interaction with IKKbeta is required for TNF-induced NF-kappaB activation. To determine whether NEMO and IKKalpha can form a functional IKK complex capable of activating the classical NF-kappaB pathway in the absence of IKKbeta, we utilized a panel of mouse embryonic fibroblasts (MEFs) lacking each of the IKK complex subunits. This confirmed that TNF-induced IkappaBalpha degradation absolutely requires NEMO and IKKbeta. In contrast, we consistently observed intact IkappaBalpha degradation and NF-kappaB activation in response to IL-1 in two separate cell lines lacking IKKbeta. Furthermore, exogenously expressed, catalytically inactive IKKbeta blocked TNF- but not IL-1-induced IkappaBalpha degradation in wild-type MEFs, and reconstitution of IKKalpha/beta double knockout cells with IKKalpha rescued IL-1- but not TNF-induced NF-kappaB activation. Finally, we have shown that incubation of IKKbeta-deficient MEFs with a cell-permeable peptide that blocks the interaction of NEMO with the IKKs inhibits IL-1-induced NF-kappaB activation. Our results therefore demonstrate that NEMO and IKKalpha can form a functional IKK complex that activates the classical NF-kappaB pathway in response to IL-1 but not TNF. These findings further suggest NEMO differentially regulates the fidelity of the IKK subunits activated by distinct upstream signaling pathways.  相似文献   

12.
The essential, conserved Tel2 protein plays a role in the response to DNA damage and replication stress in a wide range of eukaryotes. Tel2 interacts physically with multiple members of the PI3-kinase related protein kinase (PIKK) family in mammalian cells and fission yeast. In mammalian cells, loss of Tel2 leads to destabilization of PIKKs. Our previous work in the yeast Saccharomyces cerevisiae showed that Tel2 interacts with the PIKK Tel1 (yeast ATM kinase), and that this interaction is abrogated by the only known non-lethal TEL2 mutation in S. cerevisiae, tel2-1. We showed that this mutation specifically disrupts the function of Tel1 and not the function of the closely related protein Mec1 (yeast ATR kinase) in DNA damage responses. Here we show that Tel2 and Mec1 interact in S. cerevisiae, and that surprisingly, this physical interaction is also disrupted by the tel2-1 mutation. Although the tel2-1 mutation leads to moderately lower Mec1 levels, the ability of Mec1 to localize to a site of DNA damage and to function in DNA damage signaling remains intact. These results suggest that the model of Tel2 as solely a global regulator of PIKK stability is insufficient. Rather, Tel2 can specifically and differentially regulate the function of individual PIKKs.  相似文献   

13.
The ability of monoclonal anti-Thy-1 antibodies to stimulate IL-2 production and T-cell proliferation has raised the possibility that Thy-1 may play an important role in T-cell activation. To examine this postulated role we have produced Thy-1-negative variants of the murine T lymphoma EL-4 by mutagenesis with ethyl methanesulfonate (EMS) and subsequent negative selection with anti-Thy-1 monoclonal antibodies (mAbs) and complement. Although the parental EL-4 cell line produced interleukin-2 (IL-2) in response to concanavalin A (Con A), phytohemagglutinin, anti-Thy-1 mAbs, and an anti-T3 mAb, as well as after exposure to phorbol myristate acetate (PMA), only PMA was capable of inducing IL-2 production by several Thy-1-negative cell lines. The loss of responsiveness to cell surface stimulatory ligands appeared to be correlated with loss of Thy-1 expression because mutagenized cells selected for high levels of Thy-1 expression all responded normally to Con A. However, when Thy-1 expression was reconstituted in the "nonresponder" (Thy-1-negative) cell lines either by transfection of a Thy-1.2 gene or by 5-azadeoxycytidine treatment, the revertant cell lines were still unable to produce IL-2 when stimulated with Con A, anti-Thy-1, or anti-T3. Furthermore, several other independently derived Thy-1-negative EL-4 cell lines responded normally to mitogens and mitogenic mAbs. Taken together, these results suggest that Thy-1 expression is not required for the T-cell activation process and that the EMS mutagenesis procedure resulted in an additional mutation(s) responsible for the inability of certain Thy-1-negative cell lines to be triggered by mitogens and mitogenic mAbs. These cell lines may prove to be valuable tools for further biochemical and molecular studies of the sequence of events associated with T-cell activation.  相似文献   

14.
Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination   总被引:12,自引:0,他引:12  
The Cdk inhibitor p21Cip1 is an unstable protein. Pharmacologic inhibition of the proteasome increases the half-life of p21 from less than 30 min to more than 2 hr and results in the accumulation of p21-ubiquitin conjugates. To determine whether ubiquitination was required for proteasomal degradation of p21, we constructed mutant versions of p21 that were not ubiquitinated in vivo. Remarkably, these mutants remained unstable and increased in abundance upon proteasome inhibition, indicating that direct ubiquitination of p21 is not necessary for its turnover by the proteasome. The frequently observed correlation between protein ubiquitination and proteasomal degradation is insufficient to conclude that ubiquitination is a prerequisite for degradation.  相似文献   

15.
Lipofection does not require the removal of serum.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

16.
The evolutionarily conserved Ras/Raf/MEK/ERK pathway is thought to be essential for proliferation of eukaryotic cells. The human multiple myeloma (MM) cell line 8226 encodes an activated K-ras allele and proliferates without requirement for the main MM growth and survival factor IL-6. Surprisingly, the addition of the MEK1/2 inhibitors PD98059 or U0126 to 8226 cultures at doses that block virtually all ERK1/2 activity had minimal effects on the rapid proliferation of this cell line. In contrast, proliferation of the IL-6-dependent MM cell line, ANBL-6 was blocked by PD98059. Levels of activated forms of the other classical MAP kinases (JNK and p38) were very low during MM cell proliferation and, therefore, do not substitute for the mitogenic activities normally regulated by ERK kinases. These data demonstrate that proliferation of 8226 cells does not require ERK1/2 activity, and suggest that IL-6-independent growth of MM may correlate with independence from a requirement for ERK activity. Other signal transduction pathways that appear to regulate cell cycle progression in these cells were examined.  相似文献   

17.
Various molecular mechanisms of unconventional secretion of fibroblast growth factor 2 and galectin-1 have been proposed. A non-vesicular pathway that is based on direct translocation across the plasma membrane has been described. In other studies, however, release into the extracellular space of cell-derived vesicles was implicated in both FGF-2 and Gal-1 secretion. Such vesicles were proposed to originate either from plasma membrane shedding or by the release of exosomes. Employing an inhibitor of plasma membrane blebbing and based on a quantitative biochemical analysis of cell culture supernatants for vesicles potentially carrying FGF-2 or Gal-1, we demonstrate that both FGF-2 and Gal-1 are not exported by shedding of plasma membrane-derived vesicles.  相似文献   

18.
Selective suppression of hyperactive sensory neurons is an attractive strategy for managing pathological pain. Blocking Na+ channels to eliminate action potentials and desensitizing transduction channels can both reduce sensory neuron excitability. The novel synthetic vanilloid ligand cap-ET preserves agonist activation of intracellular Ca2+ signals and large organic cation transport but loses effective electric current induction. Cap-ET can therefore be used to deliver the membrane impermeable Na+ channel blocker QX-314 to substantially inhibit voltage-activated Na+ currents. We explored, besides facilitating entry of organic cationic therapeutics, whether cap-ET can also produce receptor desensitization similar to the natural agonist capsaicin. Using the YO-PRO-1 based fluorescent dye uptake assay, we found that cap-ET effectively triggered Ca2+ dependent desensitization of TRPV1 when the receptor was pre-sensitized with the surrogate oxidative chemical phenylarsine oxide (PAO), suggesting an alternative use of permanently charged cationic capsaicinoids in differential neuronal silencing.  相似文献   

19.
20.
Xanthine dehydrogenase (XDH) is the initial enzyme in the purine catabolic pathway ofN. crassa. Secondary nitrogen sources such as purines are metabolized when preferred sources of reduced nitrogen (ammonium or glutamine) are unavailable. XDH synthesis is regulated by glutamine repression and uric acid induction. Thenit-2 locus is believed to encode atrans-acting positive regulator essential for the expression of genes encoding enzymes involved in secondary pathways of nitrogen acquisition, such as XDH and nitrate reductase. However, immunoblot analyses and enzyme assays reveal that XDH protein is synthesized and XDH activity is expressed innit-2 mutants. Nevertheless, XDH responds to nitrogen metabolite repression. The generality thatnit-2 is an obligate control element in nitrogen metabolite repression is questioned. Additionally, mutants defective in XDH activity, namely,xdh-1 and the molybdenum cofactor mutantsnit-1, -7, -8 and -9, are observed to grow on xanthine but not hypoxanthine.This research was supported in part by National Science Foundation Grant DMB 8516203.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号