首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aira M  Domínguez J 《PloS one》2011,6(1):e16354

Background

Earthworms are key organisms in organic matter decomposition because of the interactions they establish with soil microorganisms. They enhance decomposition rates through the joint action of direct effects (i.e. effects due to direct earthworm activity such as digestion, burrowing, etc) and indirect effects (i.e. effects derived from earthworm activities such as cast ageing). Here we test whether indirect earthworm effects affect microbial community functioning in the substrate, as when earthworms are present (i. e., direct effects).

Methodology/Principal Findings

To address these questions we inoculated fresh organic matter (pig manure) with worm-worked substrates (vermicompost) produced by three different earthworm species. Two doses of each vermicompost were used (2.5 and 10%). We hypothesized that the presence of worm-worked material in the fresh organic matter will result in an inoculum of different microorganisms and nutrients. This inoculum should interact with microbial communities in fresh organic matter, thus promoting modifications similar to those found when earthworms are present. Inoculation of worm-worked substrates provoked significant increases in microbial biomass and enzyme activities (β-glucosidase, cellulase, phosphatase and protease). These indirect effects were similar to, although lower than, those obtained in pig manure with earthworms (direct and indirect earthworm effects). In general, the effects were not dose-dependent, suggesting the existence of a threshold at which they were triggered.

Conclusion/Significance

Our data reveal that the relationships between earthworms and microorganisms are far from being understood, and suggest the existence of several positive feedbacks during earthworm activity as a result of the interactions between direct and indirect effects, since their combination produces stronger modifications to microbial biomass and enzyme activity.  相似文献   

2.
This was a preliminary investigation to define the conditions of colonization of a human skin equivalent (SE) model with cutaneous microorganisms. SEs of 24 mm diameter were constructed with a dermal matrix of fibrin containing fibroblasts and a stratified epidermis. Microbial colonization of the SEs was carried out in a dry environment, comparable to 'in vivo' skin, using a blotting technique to remove inoculation fluid. The microbial communities were sampled by scrub washing and viable cells enumerated on selective growth medium. Staphylococcus epidermidis, Propionibacterium acnes and Malassezia furfur (human skin commensals) and Staphylococcus aureus (transient pathogen) were colonized at inoculum densities of 10(2)-10(6) CFU SE(-1) on the surface of replicate SEs. Growth of all species was supported for upto 72-120 h, with recovery densities of between 10(4)-10(9) CFU SE(-1). A novel, real-time growth monitoring method was also developed, using S. aureus containing a lux cassette. Light output increased from 20 to 95 h, and colonization increased from 10(2) to 10(8) CFU SE(-1), as confirmed by conventional recovery. Thus, the SE model has potential to investigate interactions between resident and transient microbial communities with themselves and their habitat, and for testing treatments to control pathogen colonization of human skin.  相似文献   

3.
The objective of this review is to summarize developments in the use of quantitative affinity chromatography to determine equilibrium constants for solute interactions of biological interest. Affinity chromatography is an extremely versatile method for characterizing interactions between dissimilar reactants because the biospecificity incorporated into the design of the affinity matrix ensures applicability of the method regardless of the relative sizes of the two reacting solutes. Adoption of different experimental strategies, such as column chromatography, simple partition equilibrium experiments, solid-phase immunoassay, and biosensor technology, has led to a situation whereby affinity chromatography affords a means of characterizing interactions governed by an extremely broad range of binding affinities--relatively weak interactions (binding constants below 10(3) M(-1)) through to interactions with binding constants in excess of 10(9) M(-1). In addition to its important role in solute separation and purification, affinity chromatography thus also possesses considerable potential for investigating the functional roles of the reactants thereby purified.  相似文献   

4.
Rhododendron formosanum is distributed widely in the central mountains in Taiwan and the major allelopathic compound in the leaves has been identified as (-)-catechin, which is also a major allelochemical of an invasive spotted knapweed in North America. Soil microorganisms play key roles in ecosystems and influence various important processes, including allelopathy. However, no microorganism has been identified as an allelochemical mediator. This study focused on the role of microorganisms in the allelopathic effects of R. formosanum. The microorganism population in the rhizosphere of R. formosanum was investigated and genetic analysis revealed that the predominant genera of microorganisms in the rhizosphere of R. formosanum were Pseudomonas, Herbaspirillum, and Burkholderia. The dominant genera Pseudomonas utilized (-)-catechin as the carbon source and catalyzed the conversion of (-)-catechin into protocatechuic acid in vitro. The concentrations of allelochemicals in the soil were quantified by liquid chromatography-electrospray ionization/tandem mass spectrometry. The concentration of (-)-catechin in the soil increased significantly during the extreme rainfall in the summer season and suppressed total bacterial populations. Protocatechuic acid accumulation was observed while total bacterial populations increased abundantly in both laboratory and field studies. Allelopathic interactions were tested by evaluating the effects of different allelochemicals on the seed germination, radicle growth, and photosynthesis system II of lettuce. Protocatechuic acid exhibited higher phytotoxicity than (-)-catechin did and the effect of (-)-catechin on the inhibition of seed germination was enhanced by combining it with protocatechuic acid at a low concentration. This study revealed the significance of the allelopathic interactions between R. formosanum and microorganisms in the rhizosphere. These findings demonstrate that knowledge regarding the precise biotransformation process of (-)-catechin by microorganisms in the environment is necessary to increase our understanding of allelopathy.  相似文献   

5.
The objective of this review is to summarize the development of chromatographic techniques for the determination of reaction stoichiometries and equilibrium constants for solute interactions of biological importance. Gel chromatography is shown to offer a convenient means of characterizing solute self-association as well as solute-ligand interactions. Affinity chromatography is an even more versatile method of characterizing interactions between dissimilar reactants because the biospecificity incorporated into the design of the affinity matrix ensures applicability of the method regardless of the relative sizes of the two reactants. Adoption of different experimental strategies such as column chromatography, simple partition equilibrium experiments and biosensor technology has created a situation wherein affinity chromatography affords a means of characterizing the whole range of reaction affinities-from relatively weak interactions (binding constants less that 10(3)M (-1)) to tight interactions with binding constants greater than 10(9)M (-1). In addition to its established prowess as a means of solute separation and purification, chromatography thus also possesses considerable potential for investigation of the functional roles of the purified reactants-an endeavour that requires characterization as well as identification of the interactions responsible for a physiological phenomenon.  相似文献   

6.
In this study, a quinone profiling method was applied to clarify the differences in community structure between suspended and sessile microorganisms in rivers. The compositions of microbial quinone of 6 sites for 4 rivers were analyzed. Ubiquinone (UQ)-8, UQ-10, menaquinone (MK)-7, and plastoquinone (PQ)-9 were observed in all samples of suspended and sessile microorganisms for the sites investigated. The dominant quinone species in suspended microorganisms was ubiquinone, and that in sessile microorganism was photosynthetic quinones (namely PQ-9 and vitamin K1). This indicated that aerobic bacteria were abundant in the suspended microorganisms, and photosynthetic microorganisms such as micro-algae and cyanobacteria dominated in the sessile microorganisms. The quinone concentration in the river waters tested, which reflects the concentration of suspended microorganisms, ranged from 0.045 to 1.813 nmol/L. The microbial diversities of suspended and sessile microorganisms calculated based on the composition of all quinones were in the range from 3.4 to 7.5, which was lower than those for activated sludge and soils. Moreover, the diversity of heterotrophic bacteria for sessile microorganisms in the rivers was higher than that for the suspended microorganisms.  相似文献   

7.
Gliding and near-surface swimming of microorganisms are described as a mobile form of microbial adhesion that need not necessarily be reversible. It is argued that the reversibility of microbial adhesion depends on the depth of the secondary interaction minimum, calculated from the forces between an organism and a substratum acting in a direction perpendicular to the substratum surface. The mobility of adhering microorganisms depends on lateral interactions between the organisms. On ideally homogeneous and smooth model surfaces, only mobile adhesion occurs because the multibody, lateral interactions are weak compared with the thermal or Brownian motion energy of the organisms. Minor chemical or structural heterogeneities, which exist on all real-life surfaces, yield a lateral interaction on adhering microorganisms. This causes their immobilization, which helps to explain the physicochemical nature of microbial gliding or near-surface swimming. Moreover, these lateral interaction energies are one order of magnitude smaller than the Lifshitz-Van der Waals, electrostatic, and acid-base forces acting perpendicular to substratum surfaces that are responsible for adhesion. Received: 2 April 1998 / Accepted: 26 May 1998  相似文献   

8.
土壤宏基因组学技术及其应用   总被引:17,自引:0,他引:17  
传统的基于培养的研究方法只能反映土壤中少数(0.1%~10 %)微生物的信息,而大部分微生物目前还不能培养,因而这部分微生物资源尚难以被有效地开发利用.宏基因组学是分子生物学技术应用于环境微生物生态学研究而形成的一个新概念,主要技术包括土壤DNA的提取、文库的构建和目标基因克隆的筛选.它可为揭示微生物生态功能及其分子基础提供更全面的遗传信息,并已在微生物新功能基因筛选、活性物质开发和微生物多样性研究等方面取得了显著成果.本文对土壤宏基因组学技术的方法和应用作了详细介绍.  相似文献   

9.
We studied the dynamics of microbial communities attached to model aggregates (4-mm-diameter agar spheres) and the component processes of colonization, detachment, growth, and grazing mortality. Agar spheres incubated in raw seawater were rapidly colonized by bacteria, followed by flagellates and ciliates. Colonization can be described as a diffusion process, and encounter volume rates were estimated at about 0.01 and 0.1 cm(3) h(-1) for bacteria and flagellates, respectively. After initial colonization, the abundances of flagellates and ciliates remained approximately constant at 10(3) to 10(4) and approximately 10(2) cells sphere(-1), respectively, whereas bacterial populations increased at a declining rate to >10(7) cells sphere(-1). Attached microorganisms initially detached at high specific rates of approximately 10(-2) min(-1), but the bacteria gradually became irreversibly attached to the spheres. Bacterial growth (0 to 2 day(-1)) was density dependent and declined hyperbolically when cell density exceeded a threshold. Bacterivorous flagellates grazed on the sphere surface at an average saturated rate of 15 bacteria flagellate(-1) h(-1). At low bacterial densities, the flagellate surface clearance rate was approximately 5 x 10(-7) cm(2) min(-1), but it declined hyperbolically with increasing bacterial density. Using the experimentally estimated process rates and integrating the component processes in a simple model reproduces the main features of the observed microbial population dynamics. Differences between observed and predicted population dynamics suggest, however, that other factors, e.g., antagonistic interactions between bacteria, are of importance in shaping marine snow microbial communities.  相似文献   

10.
AIM: To determine a composition of gut microflora during salmonellosis and to study the modification of persistent characteristics (antilysozyme activity, ALA) of symbiotic microorganisms in associations. MATERIALS AND METHODS: Bacteriologic study of feces was performed in 90 patients aged 18-39 years, which were divided to three groups: patients with salmonellosis in acute phase, reconvalescent patients, and conditionally healthy persons. Condition of gut microflorawas determined; microorganisms associated with Salmonella infection were isolated, and their influence on ALA of Salmonella was studied. RESULTS: Gut microbiocenosis was more diverse in patients compared with healthy persons. Significant reduction of bifidobacteria quantity (to 10(7) CFU/g of feces and less), especially in reconvalescent period, was noted. Association between bifidoflora deficiency and excessive increase of quantity of yeast fungi was revealed. It was determined that exometabolites of indigenous anaerobic microflora (bifidobacteria) promoted decrease of ALA of Salmonella, whereas opportunistic facultatively anaerobic microorganisms (enterobacteria, staphylococci) rendered mainly stimulating effect on the ALA of Salmonella. CONCLUSION: Obtained data reveal characteristics of bacterial interactions in associative symbiosis and provide insights about mechanisms of formation of pathobiocenosis and state of bacterial carriage.  相似文献   

11.
In aerobic environments microorganisms are faced with a discrepancy of ~10 orders of magnitude between the available Fe (~10-17M) and their metabolic requirement for it (~10-7M). In contrast to facultative anaerobic environments, where dissimilatory iron-reducing bacteria (DIRB) are often abundant, few studies have detailed microbial interactions with Fe(III) (hydr)oxides in aerobic environments. To better understand acquisition of Fe from Fe(III) (hydr)oxides, we investigated the production of siderophore and Fe(III) reduction by a strict aerobe in the presence of synthetic hematite as a source of Fe. Pseudomonas mendocina grew best when Fewas supplied as FeEDTA (~1.8x108 colony-forming units [CFU] ml-1), grew abundantly when Fe was supplied as hematite (~1.2x108 CFU ml-1), and grew poorly when Fe was withheld from the medium (~5.5x107 CFU ml-1). As expected, negligible siderophore was produced per cell when Fe was supplied as FeEDTA and more siderophore was produced in the hematite flasks than in the controls. Thus, growth of P. mendocina and the production of siderophore in the presence of hematite present compelling evidence that siderophore was produced as a mechanism to acquire Fe from hematite. For the Fe reduction experiments, Fe reduction by components of the supernatant fluid was induced weakly when Fe was supplied as hematite or as FeEDTA, but much more when the cells were cultured under extreme Fe deprivation. In fact, 16 times as much Fe reduction occurred in the controls as in the presence of either of the FeEDTA or hematite amendments. Our results, which contravene the long-held assumptions that Fe acquisition was facilitated solely by siderophores, provides a new perspective regarding microbial interactions with Fe bearing minerals.  相似文献   

12.
Marine environment habitats, such as the coral mucus layer, are abundant in nutrients and rich with diverse populations of microorganisms. Since interactions among microorganisms found in coral mucus can be either mutualistic or competitive, understanding quorum sensing-based acyl homoserine lactone (AHL) language may shed light on the interaction between coral-associated microbial communities in the native host. More than 100 bacterial isolates obtained from different coral species were screened for their ability to produce AHL. When screening the isolated coral bacteria for AHL induction activity using the reporter strains Escherichia coli K802NR-pSB1075 and Agrobacterium tumefaciens KYC55, we found that approximately 30% of the isolates tested positive. Thin layer chromatography separation of supernatant extracts revealed different AHL profiles, with detection of at least one active compound in the supernatant of those bacterial extracts being able to induce AHL activity in the two different bioreporter strains. The active extract of bacterial isolate 3AT 1-10-4 was subjected to further analysis by preparative thin layer chromatography and liquid chromatography tandem mass spectrometry. One of the compounds was found to correspond with N-(3-hydroxydecanoyl)-l-homoserine lactone. 16S rRNA gene sequencing of the isolates with positive AHL activity affiliated them with the Vibrio genus. Understanding the ecological role of AHL in the coral environment and its regulatory circuits in the coral holobiont-associated microbial community will further expand our knowledge of such interactions.  相似文献   

13.
植物与土壤微生物在调控生态系统养分循环中的作用   总被引:14,自引:0,他引:14       下载免费PDF全文
陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。  相似文献   

14.
15.
土壤矿物与微生物相互作用的机理及其环境效应   总被引:4,自引:0,他引:4  
土壤矿物与微生物相互作用是地球表层系统中重要的生态过程.微生物或生物分子与矿物间的吸附(粘附)是两者相互作用的基础.吸附(粘附)是一个由分子间力、静电力、疏水作用力、氢键和空间位阻效应等多种作用力或作用因素共同决定、影响的物理化学过程.因此,微生物和矿物的表面性质如表面电荷、疏水性和它们所处的环境条件如pH、电解质浓度、温度等,都影响着矿物-微生物吸附(粘附)过程.微生物细胞或酶可吸附于矿物表面,其结果是细胞代谢或酶活性会发生明显变化,并进一步影响土壤中诸多相关的生态、环境过程.结合4种典型的初始吸附理论:表面自由能热力学理论、DLVO理论、吸附等温线理论和表面复合物理论及本课题组近年来的研究成果,对土壤矿物与微生物相互作用的类型、机理、作用力和现代研究技术等方面的最新研究进展进行了较为全面的论述,对土壤矿物-微生物相互作用的环境效应进行了讨论,并就该领域今后研究工作的特点及应关注的问题进行了展望.  相似文献   

16.
International Microbiology - This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the...  相似文献   

17.
Fluorescence in situ hybridization (FISH) using rRNA targeted oligonucleotide probes is a standard method for identification of microorganisms in environmental samples. Apart from its value as a phylogenetic marker ribosomal RNA has always been the favoured target molecule for FISH because of its abundance in all cells, whereas plasmids and DNA were regarded as unsuitable targets because of their low copy number. Here we present an improved FISH technique, which is based on polynucleotide probes. It goes beyond the detection of high copy intracellular nucleic acids such as rRNA (up to 10(4)-10(5) copies per cell) and allows for the first time the in situ detection of individual genes or gene fragments on plasmids (10(1)-10(3) copies per cell) and chromosomal DNA (<10 copies per cell) in a single cell. Using E. coli as model organism we were able to detect in situ cells harbouring the antibiotic resistance gene beta lactamase on high, medium and low copy plasmids as well as the chromosomal encoded housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Furthermore, we detected the prepilin peptidase gene xpsO in the plant pathogen Xanthomonas campestris in situ. Because of the characteristic hybridization signal obtained with this method--a halo-like, ring-shaped concentration of fluorescence in the cell periphery--we coined the term RING-FISH (recognition of individual genes) to differentiate it from conventional FISH.  相似文献   

18.
叶际微生物及其生存环境共同形成了一个复杂的生态系统。建立在纯种分离和纯培养技术基础之上的传统研究方法只能了解其中部分叶际微生物,但对物种组成、种群结构和生态学作用等方面的认识都比较片面。近年来随着分子生物学和生物信息学的进步,人们对叶际微生物总群落的分析逐渐揭示了叶际微生物组成的多样性及其特点,以及与外界互相作用的复杂性。研究表明,植物种类、地理位置和季节差异等都不同程度地影响着叶际微生物群落的构成。本文综述了近年来国内外叶际微生物群落结构组成及其与外界互作方面的研究进展,有利于加深对叶际微生物的了解,也有助于深入理解叶际微生物与植物生长和植物病虫害防治的关联关系。  相似文献   

19.
食微线虫对植物生长及土壤养分循环的影响   总被引:15,自引:0,他引:15  
近二十多年来, 土壤动物的生态功能受到广泛重视。越来越多的证据表明, 土壤动物和微生物间的相互作用对土壤生态系统过程和植物生长起着重要的调节作用。本文综述了食细菌线虫和食真菌线虫对土壤微生物、土壤氮矿化和植物生长的影响。大量研究发现, 食细菌线虫和食真菌线虫都有助于土壤氮素等养分矿化, 从而促进植物生长。这种作用主要是线虫通过取食活动加速微生物周转, 并通过代谢分泌和释放微生物所固持的养分而实现的。但这种作用会因不同的线虫、微生物和植物的种类以及土壤基质的C/N营养状况而异, 此外还受线虫的营养类群及其与其他土壤动物之间复杂关系的影响。今后应该加强以下几方面的研究: (1)深入研究线虫、微生物和植物之间相互作用的机制; (2) 增加控制实验系统的复杂性, 研究线虫不同功能群之间及其与其他土壤动物之间的关系; (3)加强长期实验和观察, 在较长的时间尺度上了解线虫的生态功能; (4)加强对不同生态系统的研究, 在更大的空间尺度上综合了解土壤线虫的生态功能; (5)在全球气候变化的背景下了解土壤线虫的响应, 并预测土壤线虫对全球变化的反馈。  相似文献   

20.
The electrophoretic mobility of microorganisms (EPM) as a measure of their electric surface charge was determined as a function of different milieu conditions with the aid of the “Parmoquant 2” cell electrophoresis apparatus manufactured by CARL ZEISS Jena. The object of these researches was to examine the influence of the electric surface charge of microorganisms on their metal loading capacity. The results show a direct correlation between the electric surface charge or the EPM of microorganisms and their maximum metal loading capacity. Cells with a high negative surface also posses a high metal binding capacity. On the other side only a negligible metal uptake can be observed at the isoelectric point of the microorganisms (EPM = 0). The method of cell electrophoresis proved suitable to analyze complex interactions between microorganisms and heavy metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号