首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Altered photosynthetic reactions in cucumber mosaic virus (CMV) inoculated leaves of virus resistant lines L113 and L57 and susceptible pepper (Capsicum annuum L.) plants cv. Albena grown in controlled environment and in the field were investigated. The CMV inoculated leaves of virus resistant lines developed different symptoms—necrotic local lesions on L113 and chlorotic spots on L57 while the same leaves of susceptible cv. Albena were symptomless. The changes in Photosystem II (PSII) and PSI electron transport were evaluated by chlorophyll fluorescence, and far-red (FR) light induced leaf absorbance A 810–860. CMV infection caused a decrease in maximal PSII quantum yield, F v/F m, in susceptible leaves. Increased non-photochemical fluorescence quenching in CMV-inoculated leaves of both resistant lines were observed. In CMV-inoculated leaves of all tested plants FR light induced P700 oxidation was decreased. In the present study, the viral-infected pepper plants grown in controlled environment to avoid the effects of abiotic factors were used as model system that allow us to investigate the differences in leaf senescence in CMV-inoculated leaves of susceptible and resistant pepper lines expressing different symptoms. Earlier leaf falls of inoculated leaves as a result of accelerated leaf senescence is important for building successful secondary virus resistance strategy following fast responses such as hypersensitive reaction.  相似文献   

2.
Protocols for selecting plant tissues of winter oilseed rape (Brassica napus subsp. oleifera) with resistance to Leptosphaeria maculans by either stem or leaf inoculation of both soil and in vitro grown plant material are described. The stem inoculation procedure gave good correlation (r = 0. 92) between the 50 day stem disease scores of eight out of nine cultivars of soil grown winter oilseed rape inoculated with isolate 41A4 of L. maculans and the N. A. B. esistance ratings or resistance data from field trials. The exception was the cultivar Liradonna. Inoculation of stems of five cultivars with isolates 41A4, 433 and 478 indicated a range of isolate virulence 478 > 41A4 > 433. This was the inverse of that observed in leaf inoculations. Application of the stem inoculation procedure to in vitro shoot cultures allowed differentiation of resistant and susceptible cultivars, including the cultivar Liradonna, after 20 days incubation at 20°C. The protocol was also applicable to plantlets regenerated from thin cell layer explants grown in vitro. Inoculations with isolate 433 allowed the differentiation of resistant, intermediately resistant and susceptible leaf material of soil grown plants, when leaf discs from young leaves were incubated on water agar supplemented with BAP (1 × 10?5 M) at 25°C for 10 days. Intermediately resistant leaves were resistant after 10 days and susceptible after 15 days of incubation. Leaves of shoot cultures grown in vitro were more susceptible than the corresponding soil grown material. However, inoculation of old leaves with isolate 41A4 (an isolate of less virulence on leaves than 433) distinguished the cultivars after 15 days of incubation. These protocols allow the accurate assessment of resistance to L. maculans at the stem or leaf level and are of use in traditional as well as in vitro selection programmes.  相似文献   

3.
This study investigated, at the microscopic level, whether the differential defence responses of soybean cultivars that are resistant (Fundacep 59) and susceptible (TMG 132) to target spot, caused by Corynespora cassiicola, could be associated with an increase in the production of phenolics, flavonoids and lignin at the infection sites. Many larger necrotic lesions with yellow halos were noticed on the leaves of plants from cultivar TMG 132, in contrast to the leaves of plants from cultivar Fundacep 59. Necrotic lesions also developed on the petioles of leaves of plants from cultivar TMG 132, while on the petioles and veins of leaves of plants from cultivar Fundacep 59, the lesions were of purple colour. The growth of fungal hyphae was reduced on the leaves of plants from cultivar Fundacep 59, and an apparently high density of trichomes was found in comparison with the leaves of plants from cultivar TMG 132. An appressorium‐like structure was produced at one or both extremities of the conidium of C. cassiicola, preferentially at the major and minor veins on the adaxial leaf surface of plants from both cultivars. Most cells on the leaves of plants from cultivar Fundacep 59 reacted against Ccassiicola infection by accumulating phenolic‐like compounds, which contributed to the death of many fungal hyphae and a greater maintenance of cell integrity. In contrast, fungal hyphae grew without any impedance in the leaf cells of plants from cultivar TMG 132, which was associated with signs of intense leaf tissue disorganization. Stronger autofluorescence and deposition of lignin and flavonoids were found in the cells of leaves of plants from cultivar Fundacep 59, in contrast to cultivar TMG 132. It can be concluded that soybean resistance to target spot is probably dependent on the activation of the phenylpropanoid pathway.  相似文献   

4.
In experiments to develop a method for assessing the field susceptibility of potato cultivars to blackleg (Erwinia carotovora subsp. atroseptica) seed tubers were stab-inoculated near the stolon (attachment end), with a suspension of the bacterium, or with water, before planting. Disease symptoms were recorded in three years (1980–1982) and plant growth and yield in 1982. Estima and Maris Bard were the most susceptible cultivars with many plants failing to emerge and most of those that did showing disease symptoms. Pentland Crown was the most resistant: few plants failed to emerge and few showed blackleg. Nevertheless compared with water-inoculated plants bacterial inoculation of the seed tubers of this cultivar caused loss of yield and differences in tuber size distribution. Cara, Wilja and King Edward showed intermediate reactions.  相似文献   

5.
Properties of a resistance-breaking strain of potato virus X   总被引:5,自引:0,他引:5  
During indexing of a potato germplasm collection from Bolivia, a strain of potato virus X (PVX), XHB, which failed to cause local lesions in inoculated leaves of Gomphrena globosa was found in 7% of the clones. XHB was transmitted by inoculation of sap to 56 species from 11 families out of 64 species from 12 families tested. It was best propagated in Nicotiana glutinosa or N. debneyi; Montia perfolia and Petunia hybrida were useful as local lesion hosts. Inoculated leaves of G. globosa plants kept at 10°, 14°, 18°, 22°, or 26 °C after inoculation were always infected symptomlessly. XHB caused a mild mosaic, systemic chlorotic blotching or symptomless infection in 16 wild potato species and eight Andean potato cultivars, systemic necrotic symptoms in clone A6 and cultivar Mi Peru, and bright yellow leaf markings in cultivar Renacimiento. It caused necrotic local lesions in inoculated leaves of British potato cultivars with the PVX hypersensitivity gene Nb but then invaded the plants systemically without causing further necrosis; with gene Nx systemic invasion occurred but no necrotic symptoms developed. These reactions resemble those of PVX strain group four. XHB differed from other known strains of PVX in readily infecting PVX-immune clones 44/1016/10, G. 4298.69 and USDA 41956, cultivars Saphir and Saco, and Solanum acaule PI 230554. XHB had slightly flexuous filamentous particles with a normal length of 516 nm. It was transmitted readily by plant contact and it partially protected G. globosa leaves from infection with XCP, a group two strain of PVX. Sap from infected N. glutinosa was infective after dilution to 10--6 but not 10--7 after 10 min at 75° but not 80 °C and after 1 yr at 20 °C. XHB was readily purified from infected N. debneyi leaves by precipitation with polyethylene glycol followed by differential centrifugation. Microprecipitin tests showed that XHB and XCP are closely related serologically.  相似文献   

6.
The proteolytic activity of the leaf extracellular space of wheat cultivars Pigüé and Isla Verde was estimated after inoculation of either detached leaves or plants with the fungus Septoria tritici. Pigüé is resistant, whereas Isla Verde is susceptible to the disease caused by S. tritici. Viable conidiospores of the fungus caused similar increases in both hydrogen peroxide production and chitinase activity of the cultivars studied. In contrast, they caused a decrease in the extracellular serine proteinase activity of Isla Verde and a significant increase in that of Pigüé. Independently of the cultivar from which it was extracted, the extracellular serine proteinase inhibited the germination of Septoria tritici conidiospores. These results suggest that the proteolytic activity of the leaf extracellular space can participate in the defence of wheat plants against Septoria tritici. Its regulation may be controlled by specific defence components of each cultivar.  相似文献   

7.
Reactions of several cultivars and breeding lines of melons to artificial inoculation at the seedling stage with a local isolate of Pseudoperonospora cubensis were compared under growth chamber and field conditions. Four different reactions were distinguishable: highly susceptible, susceptible, partially resistant and resistant. The differences in the reactions were more clear-cut under growth chamber conditions. Selection for resistance could be carried out at the seedling stage using sporangia production and lesion size, shape, colour and number as criteria. Under growth chamber conditions, plants of resistant lines had minimal sporangia production and circular or angular lesions 1–2 cm in diameter which became necrotic within 5 days after inoculation.  相似文献   

8.
Park JY  Jin J  Lee YW  Kang S  Lee YH 《Plant physiology》2009,149(1):474-486
Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice (Oryza sativa) blast. Although M. oryzae as a whole infects a wide variety of monocotyledonous hosts, no dicotyledonous plant has been reported as a host. We found that two rice pathogenic strains of M. oryzae, KJ201 and 70-15, interacted differentially with 16 ecotypes of Arabidopsis (Arabidopsis thaliana). Strain KJ201 infected all ecotypes with varying degrees of virulence, whereas strain 70-15 caused no symptoms in certain ecotypes. In highly susceptible ecotypes, small chlorotic lesions appeared on infected leaves within 3 d after inoculation and subsequently expanded across the affected leaves. The fungus produced spores in susceptible ecotypes but not in resistant ecotypes. Fungal cultures recovered from necrotic lesions caused the same symptoms in healthy plants, satisfying Koch's postulates. Histochemical analyses showed that infection by the fungus caused an accumulation of reactive oxygen species and eventual cell death. Similar to the infection process in rice, the fungus differentiated to form appressorium and directly penetrated the leaf surface in Arabidopsis. However, the pathogenic mechanism in Arabidopsis appears distinct from that in rice; three fungal genes essential for pathogenicity in rice played only limited roles in causing disease symptoms in Arabidopsis, and the fungus seems to colonize Arabidopsis as a necrotroph through the secretion of phytotoxic compounds, including 9,12-octadecadienoic acid. Expression of PR-1 and PDF1.2 was induced in response to infection by the fungus, suggesting the activation of salicylic acid- and jasmonic acid/ethylene-dependent signaling pathways. However, the roles of these signaling pathways in defense against M. oryzae remain unclear. In combination with the wealth of genetic and genomic resources available for M. oryzae, this newly established pathosystem allows comparison of the molecular and cellular mechanisms underlying pathogenesis and host defense in two well-studied model plants.  相似文献   

9.
Race 1 of Pseudomonas phaseolicola introduced into leaves of susceptible Canadian Wonder bean plants multiplied logarithmically for 3–5 days, reaching final populations about 105–106 times the original. In resistant Red Mexican, Race 1 multiplied less rapidly to give final populations about 102–103 times the original. Race 2 behaved in susceptible Red Mexican as did Race 1 in Canadian Wonder. Macroscopic symptoms appeared in leaves when bacterial numbers reached their maxima. When introduced into the cotyledonary node Race 1 moved more rapidly upwards than downwards, and more rapidly and farther in Canadian Wonder than in Red Mexican. But even in Canadian Wonder the bacterium appeared only sporadically above the node of the first compound leaf. It could be isolated only rarely from chlorotic haloes around necrotic areas in leaves, or from chlorotic leaves not carrying lesions. Fewer lesions developed and the bacteria multiplied less in older than in younger leaves. Addition of glucose and casein hydrolysate to inocula of Race 1, separately or together, had little effect on growth in Canadian Wonder or Red Mexican, and the bacterium grew equally well in extracts of susceptible and of resistant plants. Preinoculation of leaves with an avirulent race reduced the number of lesions caused by a virulent race inoculated later, and also reduced growth of this race in leaves of a susceptible variety.  相似文献   

10.
Abstract

Macroscopic symptoms were observed in two strawberry cultivars, with the degree of symptom intensity varying depending on the susceptibility of the cultivars, i.e. resistant or susceptible. The symptoms presented as red spots and were observed 30 d following leaf tissue inoculation with the Mycosphaerella fragariae pathogen. A comparison of the superoxide dismutase isoform profiles obtained by gel electrophoresis in all samples extracted from both resistant and susceptible cultivars indicated one constant sharp band, identified as Mn[sbnd]SOD with a molecular mass of 19 kDa. The intensity of this band was higher in all samples derived from the resistant cultivar than in those from the susceptible cultivar. Another superoxide dismutase (SOD) isoform, identified as CuZn[sbnd]SOD with a molecular mass of 16 kDa, was detected in all soluble proteins derived from the resistant cultivar. This isoform was not observed in the susceptible cultivar; however, following an incremental increase in the amount of loaded protein, it was illuminated as a faint band in a sample collected 3 d after inoculation, indicating insufficient production of the CuZn[sbnd]SOD isoform in the susceptible cultivar during an oxidative burst induced by the M. fragaria pathogen. Several bands were also characterized in both cultivars containing Fe and Mn as their co-factors (Fe, Mn[sbnd]SOD). Unlike in the resistant cultivar, where the activity of Fe, Mn[sbnd]SOD isoforms gradually and regularly increased and reached its highest level on the third day after inoculation, the activity of the isoforms changed irregularly over 20 days of study in the susceptible cultivar.  相似文献   

11.
The gall miteAceria cladophthirus (Nalepa) is able to survice outside its gall on detached leaves ofSolanum dulcamara L. kept under non-aseptic in-vitro conditions. The survival rate of the females on susceptible leaves is about 90% after 1 day and 85% for the following days. In contrast, on resistant leaves, less than 40$ survive after 1 day while necrotic local lesions develop and later the mortality increases severely. However, the mite only completes its life-cycle on susceptible leaves. The life-cycle forA. cladophthirus takes about 12 days: six days for egg incubation and six days for two instars growth. Its life-history is simple, without alternating females specialised for hibernation; arrhenotokous parthenogenesis occurs in experimental conditions. Eggs do not play any role in gall formation. Immature stages induce gall symptoms but are less efficient than females. Mite feeding only induces complete gall symptoms on the less differentiated leaves of susceptible shoots. On susceptible detached leaves, gall symptoms are similar but weaker and their intensity decreases with increasing leaf age; fully expanded leaves remain free of symptoms.On resistant plants, mite feeding induces a hypersensitive response: necrotic local lesions, about 350 m in diameter, appear both on shoots and on detached leaves. However, young leaves develop smaller lesions than old ones. Females induce larger lesions than first larvae. Once necrosis formation is initiated, it proceeds to completion regardless of the duration of mite feeding.  相似文献   

12.
Sugarcane yellow leaf syndrome, characterized by a yellowing of the leaf midrib followed by leaf necrosis and growth suppression, is caused by sugarcane yellow leaf virus (SCYLV). We produced SCYLV-resistant transgenic sugarcane from a susceptible cultivar (H62-4671) and determined the amount of virus present following inoculation. The transgenic plants were produced through biolistic bombardment of cell cultures with an untranslatable coat protein gene. Presence of the transgene in regenerated plants was confirmed using PCR and Southern blot analysis. The transgenic lines were inoculated by viruliferous aphids and the level of SCYLV in the plants was determined. Six out of nine transgenic lines had at least 103-fold lower virus titer than the non-transformed, susceptible parent line. This resistance level, as measured by virus titer and symptom development, was similar to that of a resistant cultivar (H78-4153). The selected SCYLV-resistant transgenic sugarcane lines will be available for integration of the resistance gene into other commercial cultivars and for quantification of viral effects on yield.  相似文献   

13.
Four Chinese Brassica napus lines, generated through a breeding programme to identify Sclerotinia sclerotiorum tolerant and susceptible lines, and three European varieties were analysed for changes in glucosinolates (qualitative and quantitative), and general host reactions, after localised inoculation with a UK S. sclerotiorum isolate. Plants at the fifth leaf stage were either singly inoculated (third leaf) or were inoculated once (third leaf) and then challenged a second time (seventh leaf) 7 days after the first inoculation. The results showed very distinct reactions in the different lines and cultivars to the fungus, both locally and systemically. Of the European lines B. napus cv. Bienvenu showed good resistance (small lesions and less host damage) both 3 and 7 days post-inoculation. Capricorn was the most susceptible followed by Cobra; the third leaves of these cultivars were showing strong chlorotic and necrotic reactions by day 3 and lesions were well developed. By day 7 the third leaves of Capricorn were completely rotten whilst Cobra still had a little healthy tissue. Inoculation of the four Chinese lines showed that two had moderate resistance (014 and 020 — slightly less resistant than Bienvenu) and two were very susceptible (016 and 024 — similar reactions to Capricorn and Cobra), based on lesion size and host tissue damage. Glucosinolate induction in line 014 was good both locally and systemically, with clear local and systemic induction of indolylglucosinolates and 2-phenylethylglucosinolate both 3 and 7 days post-inoculation. Line 020 did not show no particular increases in glucosinolates after inoculation either locally or systemically. In line 016 there was a small local increase and a large systemic reduction in total glucosinolates. Inoculation of line 024 caused no major local changes in glucosinolates and again a big reduction in glucosinolates systemically. The dual inoculation system, with lines 014 and 016, produced comparable results, with line 014 showing good local and systemic induction of glucosinolates (after the first inoculation) and a further local and systemic induction after the second inoculation. This induction in pre-inoculated line 014 plants was associated with a reduction in lesion size of the second inoculum. Line 016 responded poorly both locally and systemically, and there were no real decrease in the lesion size of the second inoculum. It appears that in line 014 glucosinolate induction may be an important part of resistance, whereas in line 020 there are clearly other non-glucosinolate factors involved. The poor local and systemic induction of glucosinolates in lines 016 and 024, and subsequent susceptibility, implies that glucosinolate induction may be an important marker of resistance to S. sclerotiorum in oilseed rape.  相似文献   

14.
Upland rice cultivars were evaluated in the greenhouse for susceptibility to the rice blast disease caused by Pyricularia grisea Sacc., on two upland soils from the Philippines previously considered to be “blast conducive” and “blast non-conducive”. Under monocyclic inoculation tests plants grown in conducive soil showed significantly greater lesion development than plants of the same cultivar grown in non-conducive soil: cultivars considered to be susceptible to the isolates used showed increased number of susceptible-type lesions; resistant cultivars showed increased number of hypersensitive resistant-type lesions. A similar effect was observed under polycyclic tests where several generations of the pathogen were allowed to develop on the test plants. Dilution of conducive soil with non-conducive soil resulted in a corresponding reduction of disease severity, although this was most pronounced on resistant cultivars. Removal of leaf epicuticular waxes (LEW) using organic solvents increased the number of resistant-type lesions on resistant cultivars grown in both soils following inoculation. Susceptible plants were not suitable for quantifying the relative blast conduciveness of a soil because of the extreme environmental sensitivity of the bioassay and the tendency of lesions to coalesce. Comparing numbers of resistant-type lesions on leaves of plants stripped of LEW and inoculated with an incompatible P. grisea isolate among plants grown in different soils proved to be a satisfactory means of distinguishing the relative blast conduciveness of soils under controlled conditions. This method was field tested in eastern India and results corroborated farmer assessment of which soils were blast conducive. Using incompatible isolate-cultivar combinations and LEW-free leaves is proposed as a simple bioassay for assessing blast conduciveness of soils and should prove useful in regional characterization of rice blast risk.  相似文献   

15.
Damaging effects of either black bean aphid (Aphis fabae), broad bean rust (Uromyces viciae-fabae), or the combination of both were investigated on a susceptible (cv. Diana) and an aphid resistant (cv. Bolero) cultivar of Vicia faba. When compared with rust, aphids caused greater reductions of root dry weight, shoot dry weight, leaf area, and mean relative growth rate. The mean unit leaf rate was also reduced whereas the leaf area ratio was not affected. The damage caused per aphid was highest on the susceptible cultivar. Rust induced damage did not differ between the cultivars. Concomitant infestation with both pests only resulted in additive damage. The population development of aphids was delayed on partially resistant plants. High temperature and rust infection reduced the total number of aphids the plants were able to support but not the level of resistance. Thus the specific damaging effect per aphid was increased.  相似文献   

16.
Hypersensitive response, cell death and release of hydrogen peroxide as measures of host and non‐host defense mechanisms upon inoculation with the downy mildew pathogen Sclerospora graminicola were studied histochemically at the light microscopy level. The materials consisted of coleoptile tissues of the highly susceptible (cv. HB3), highly resistant (cv. IP18293) and induced resistant pearl millet host seedlings and non‐host sorghum (cv. SGMN10/8) and cotyledon of french bean (cv. S9). Resistance up to 80% protection against the downy mildew pathogen was induced in the highly susceptible HB3 cultivar of pearl millet by treating the seeds with 2% aqueous leaf extract of Datura metel for 3 h. Time course study with the pathogen inoculated highly resistant pearl millet cultivar revealed the appearance of hypersensitive response in 20% of seedlings as necrotic spots as early as 2 h after inoculation. In contrast, a similar reaction was observed in the highly susceptible pearl millet cultivar only 8 h after inoculation with the pathogen. In induced resistant seedlings, appearance of hypersensitive response was recorded 4 h after inoculation. Delayed hypersensitive response was observed in both the non‐host species at 10 h after inoculation. Hypersensitive response in the seedlings of the highly resistant pearl millet cultivar 24 h after inoculation showed 100% hypersensitive response, which was not observed in susceptible and non‐host species, although the induced resistant seedlings showed 90% hypersensitive response after that period of time. Cell death in the tissues of the test seedlings was also observed to change with time. Statistical analysis revealed that the tissues of highly resistant pearl millet seedlings required 2.9 h to attain 50% cell death. Tissues of induced resistant and highly susceptible pearl millet seedlings required 4.65 and 6.50 h respectively. In non‐hosts, 50% cell death was not recorded. Quantification of hydrogen peroxide in the tissue periplasmic spaces of the test seedlings revealed 2.94 h as the time required for 50% hydrogen peroxide accumulation in the tissues of highly resistant pearl millet seedlings. Tissues of induced resistant and highly susceptible pearl millet seedlings needed 3.76 and 5.5 h respectively. Fifty percent hydrogen peroxide localisation in non‐hosts could not be recorded. These results suggested the involvement of hydrogen peroxide, cell death and hypersensitive response in pearl millet host defense against S. graminicola.  相似文献   

17.
Pathogenecity and race classification of some isolates of V. dahliae from resistant tomato in Morocco In Morocco, the cv. H 204, resistant to Verticillium dahliae race 1 is widely used under plastic tunnels. Use of this cultivar controlled the disease for many years but recently a high incidence of Verticillium on this hybird was obsereved. V. dahliae was isolated from 90 % of the wilted plants.The other 10 % were infected by F. oxysporum f. sp. lycopersici alone (7 %) or in association with V dabliae (3 %). The inoculation of the Verticillium susceptible cv. Vemone and of the race 1 resistant cv. H 204 by 120 isolates obtained from the resistant hybird, showed that (69 %) of the isolates are race 1 and 31 % are race 2. There are different virulence levels of V. dahliae race 2 both on the susceptible cv. Vemone and on the race 1 resistant cv. H 204. Race 2 on the average was less virulenton the susceptible than on the resistant cultivar.  相似文献   

18.
Summary Ninetten aminoacids, twelve sugars, eleven organic acids and ten phenols were detected in the leaf exudates of three cultivars of chilli. The number of aminoacids, sugars, organic acids and phenols increased as the plants grew older. More aminoacids and sugars were detected in the exudate from the susceptible cultivar (Malwa). More organic acids and phenols were detected from the resistant cultivar (Simla). The leaf exudate of the resistant cultivar (Simla) inhibited spore germination of the pathogen (Alternaria solani) while that of susceptible (Malwa) stimulated spore germination. The cultivar ‘Patna’ which is moderately resistant, occupied an intermediate position. Spore germination of the isolated fungi was enhanced in leaf exudate of susceptible cultivar (Malwa), while leaf exudates of the moderately resistant (Patna) and resistant (Simla) inhibited spore germination of the majority of fungi isolated. Most of the antagonistic fungi were not isolated from the susceptible cultivar and the percentage spore germination of these fungi was less in leaf exudate of the susceptible cultivar, while leaf exudates of resistant cultivars enhanced the percentage spore germination of antagonistic fungi,viz Aspergillus flavus, A. fumigatus, A. versicolor, Penicillium citrinum, P. restrictum andTrichoderma viride.  相似文献   

19.
The peroxidase activities in leaves from resistant and susceptible cultivars of wheat infected and non-infected by Erysiphe graminis DC were studied. In non-infected wheat, soluble and ionic bound peroxidase activity level was found to be higher in the resistant cultivar than that in the one susceptible to Erysiphe graminis DC. After infecting wheat leaves with Erysiphe graminis DC a remarkable increase in the activity of soluble and ionic bound peroxidases was detected 5 days after inoculation only in the resistant cultivar. In the susceptible cultivar a high increase in the activity of the soluble and ionic bound peroxidases occurred only 15 days after inoculation. Using ion exchange chromatography four peroxidase fractions were obtained from infected susceptible and resistant cultivars as from non-infected ones. The fraction II in non-inoculated resistant cultivars was much higher than that in the susceptible one. This fraction increased after inoculation in both cases reaching a higher level in resistant cultivars. Fraction I was higher in the susceptible cultivar. Electrofocusing profiles of peroxidase from the susceptible and resistant cultivar differed from one another. New peroxidase bands after inoculation appeared only in the resistant cultivar.  相似文献   

20.
Loss of the water droplet above inoculation sites during the first day after inoculation inhibited lesion formation by Botrytis cinerea and prevented the development of spreading lesions of B. fabae. With droplets present two general patterns of infection by B. cinerea were determined; in one, few or no symptoms were produced and in the other, limited lesions developed with marked browning of the inoculation site. Where few or no symptoms were produced, germination and germ-tube growth were inhibited on the leaf surface. B. cinerea was inhibited within the leaf at sites bearing limited lesions; invading hyphae were restricted to brown epidermal cells. Fungal growth on the leaf surface was greatest at sites with most browning beneath the droplet area. Variation in lesion development by B. cinerea could not be related to droplet position or leaf damage during normal preparation for inoculation. Plants differed in their susceptibility to lesion formation by B. cinerea. B. fabae, with droplet present, was not inhibited on the leaf surface and spread inter- and intra-cellularly beneath the inoculum drop and then into surrounding tissues. Delay in spread until the inoculation site was completely necrotic and colonized suggested that B. fabae is partially inhibited during the initial phase of infection. The rate of lesion spread varied in different plants and was most rapid in the youngest leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号