首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The catalytic subunits of cAMP-dependent protein kinases I and II were isolated from rabbit skeletal muscles in a homogeneous state. The specific phosphotransferase activities of homogeneous preparations of catalytic subunits were 8 mumol/mg X min (type I) and 6 mumol/mg X min (type II). In order to elucidate the mechanisms of the phosphotransferase reaction, the steady-state kinetics method and an inhibitory analysis involving the phosphotransferase reaction products, ADP and phosphohistone H1, were used. It was shown that phosphorylation of histone H1 catalyzed both by protein kinases I and II occurs via a random "bi-bi" mechanism. The values of constants for kinetic equation of the phosphotransferase reaction coincide with those for the catalytic subunits of both protein kinase types and are equal to 11 microM (KmATP), 60 microM (KmH1), 5.0 microM (KSATP) and 27 microM (KSH1). The value of the competitive inhibition constant for Mg-ADP (KiADP) is also identical for the catalytic subunits of types I and II and is equal to 30 microM. In both cases, the phosphorylated histone H1 inhibits the phosphotransferase reaction; this inhibition is partly competitive with respect to histone H1.  相似文献   

3.
Rotavirus, the major pathogen of infantile gastroenteritis, carries a nonstructural protein, NSP2, essential for viroplasm formation and genome replication/packaging. In addition to RNA-binding and helix-destabilizing properties, NSP2 exhibits nucleoside triphosphatase activity. A conserved histidine (H225) functions as the catalytic residue for this enzymatic activity, and mutation of this residue abrogates genomic double-stranded RNA synthesis without affecting viroplasm formation. To understand the structural basis of the phosphatase activity of NSP2, we performed crystallographic analyses of native NSP2 and a functionally defective H225A mutant in the presence of nucleotides. These studies showed that nucleotides bind inside a cleft between the two domains of NSP2 in a region that exhibits structural similarity to ubiquitous cellular HIT (histidine triad) proteins. Only minor conformational alterations were observed in the cleft upon nucleotide binding and hydrolysis. This hydrolysis involved the formation of a stable phosphohistidine intermediate. These observations, reminiscent of cellular nucleoside diphosphate (NDP) kinases, prompted us to investigate whether NSP2 exhibits phosphoryl-transfer activity. Bioluminometric assay showed that NSP2 exhibits an NDP kinase-like activity that transfers the bound phosphate to NDPs. However, NSP2 is distinct from the highly conserved cellular NDP kinases in both its structure and catalytic mechanism, thus making NSP2 a potential target for antiviral drug design. With structural similarities to HIT proteins, which are not known to exhibit NDP kinase activity, NSP2 represents a unique example among structure-activity relationships. The newly observed phosphoryl-transfer activity of NSP2 may be utilized for homeostasis of nucleotide pools in viroplasms during genome replication.  相似文献   

4.
Enteric bacteria have been previously shown to regulate the uptake of certain carbohydrates (lactose, maltose, and glycerol) by an allosteric mechanism involving the catalytic activities of the phosphoenolpyruvate-sugar phosphotransferase system. In the present studies, a ptsI mutant of Bacillus subtilis, possessing a thermosensitive enzyme I of the phosphotransferase system, was used to gain evidence for a similar regulatory mechanism in a gram-positive bacterium. Thermoinactivation of enzyme I resulted in the loss of methyl alpha-glucoside uptake activity and enhanced sensitivity of glycerol uptake to inhibition by sugar substrates of the phosphotransferase system. The concentration of the inhibiting sugar which half maximally blocked glycerol uptake was directly related to residual enzyme I activity. Each sugar substrate of the phosphotransferase system inhibited glycerol uptake provided that the enzyme II specific for that sugar was induced to a sufficiently high level. The results support the conclusion that the phosphotransferase system regulates glycerol uptake in B. subtilis and perhaps in other gram-positive bacteria.  相似文献   

5.
The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved Rossmanniod core domain and a C1-type cap domain. Other members of this family do not possess a cap domain and because the cap domain of phosphonatase plays an important role in active site desolvation and catalysis, the function of the capless family members must be unique. A representative of the capless subfamily, PSPTO_2114, from the plant pathogen Pseudomonas syringae, was targeted for catalytic activity and structure analyses. The X-ray structure of PSPTO_2114 reveals a capless homodimer that conserves some but not all of the intersubunit contacts contributed by the core domains of the phosphonatase homodimer. The region of the PSPTO_2114 that corresponds to the catalytic scaffold of phosphonatase (and other HAD phosphotransfereases) positions amino acid residues that are ill suited for Mg+2 cofactor binding and mediation of phosphoryl group transfer between donor and acceptor substrates. The absence of phosphotransferase activity in PSPTO_2114 was confirmed by kinetic assays. To explore PSPTO_2114 function, the conservation of sequence motifs extending outside of the HADSF catalytic scaffold was examined. The stringently conserved residues among PSPTO_2114 homologs were mapped onto the PSPTO_2114 three-dimensional structure to identify a surface region unique to the family members that do not possess a cap domain. The hypothesis that this region is used in protein-protein recognition is explored to define, for the first time, HADSF proteins which have acquired a function other than that of a catalyst.  相似文献   

6.
Some antibodies contain variable (V) domain catalytic sites. We report the superior amide and peptide bond-hydrolyzing activity of the same heavy and light chain V domains expressed in the IgM constant domain scaffold compared with the IgG scaffold. The superior catalytic activity of recombinant IgM was evident using two substrates, a small model peptide that is hydrolyzed without involvement of high affinity epitope binding, and HIV gp120, which is recognized specifically by noncovalent means prior to the hydrolytic reaction. The catalytic activity was inhibited by an electrophilic phosphonate diester, consistent with a nucleophilic catalytic mechanism. All 13 monoclonal IgMs tested displayed robust hydrolytic activities varying over a 91-fold range, consistent with expression of the catalytic functions at distinct levels by different V domains. The catalytic activity of polyclonal IgM was superior to polyclonal IgG from the same sera, indicating that on average IgMs express the catalytic function at levels greater than IgGs. The findings indicate a favorable effect of the remote IgM constant domain scaffold on the integrity of the V-domain catalytic site and provide a structural basis for conceiving antibody catalysis as a first line immune function expressed at high levels prior to development of mature IgG class antibodies.  相似文献   

7.
The mechanism by which the oxidation-reduction potential regulates the bacterial phosphotransferase system in Escherichia coli has been investigated. Transphosphorylation experiments verified that the oxidizing agent, potassium ferricyanide, directly inhibits mannitol enzyme II activity. Phosphorylation of enzyme IImtl with enzyme I, heat-stable phosphocarrier protein of the phosphotransferase system, and phosphoenolpyruvate partially protects the enzyme from ferricyanide inhibition. The enzyme is even less sensitive to inhibition during catalytic turnover. Preincubation of unphosphorylated enzyme with ferricyanide, however, reversibly inactivates it even at high mannitol concentrations. The results are inconsistent with a regulatory mechanism in which sulfhydryl oxidation influences the affinity of the enzyme for the substrate. Instead, it is concluded that the oxidized enzyme is inactive.  相似文献   

8.
Glutathione peroxidase (GPX) is a critical antioxidant selenoenzyme in organisms that protects cells against oxidative damage by catalyzing the reduction of hydroperoxides by glutathione (GSH). Thus, some GPX mimics have been generated because of their potential therapeutic value. The generation of a semisynthetic selenoenzyme with peroxidase activity, which matches the catalytic efficiencies of naturally evolved GPX, has been a great challenge. Previously, we semisynthesized a GPX mimetic with high catalytic efficiency using a rat theta class glutathione transferase (rGST T2-2) as a scaffold, in which the highly specific GSH-binding site is adjacent to an active site serine residue that can be chemically modified to selenocysteine (Sec). In this study, we have taken advantage of a new scaffold, hGSTZ1-1, in which there are two serine residues in the active site, to achieve both high thiol selectivity and highly catalytic efficiency. The GPX activity of Se-hGSTZ1-1 is about 1.5 times that of rabbit liver GPX, indicating that the selenium content at the active site plays an important role in enhancement of catalytic performance. Kinetic studies revealed that the catalytic mechanism of Se-hGSTZ1-1 belong in a ping-pong mechanism similar to that of the natural GPX.  相似文献   

9.
The activation of phosphorylase kinase (EC 2.7.1.38; ATP:phosphorylase b phosphotransferase) by the catalytic subunit of cAMP-dependent protein kinase (EC 2.7.1.37; ATP:protein phosphotransferase) is inhibited by calmodulin. The mechanism of that inhibition has been studied by kinetic measurements of the interactions of the three proteins. The binding constant for calmodulin with phosphorylase kinase was found to be 90 nM when measured by fluorescence polarization spectroscopy. Glycerol gradient centrifugation studies indicated that 1 mol of calmodulin was bound to each phosphorylase kinase. Phosphorylation of the phosphorylase kinase did not reduce the amount of calmodulin bound. Kinetic studies of the activity of the catalytic subunit of cAMP-dependent protein kinase on phosphorylase kinase as a function of phosphorylase kinase and calmodulin concentrations were performed. The results of those studies were compared with mathematical models of four different modes of inhibition: competitive, noncompetitive, substrate depletion, and inhibition by a complex between phosphorylase kinase and calmodulin. The data conform best to the model in which the inhibitory species is a complex of phosphorylase kinase and calmodulin. The complex apparently competes with the substrate, phosphorylase kinase, which does not have exogenous calmodulin bound to it. In contrast, the phosphorylation of the synthetic phosphate acceptor peptide, Kemptide, is not inhibited by calmodulin.  相似文献   

10.
Orthologous proteomes, universal protein networks conserved from bacteria to mammals, dictate the core functions of cells. To isolate mammalian protein sequences that interact with bacterial signaling proteins, a BLASTP genome search was performed using catalytic domains of bacterial phosphoryl-transfer enzymes as probes. A [32P]phosphoryl-transfer assay of these mammalian cDNA-expressing Escherichia coli cells was used to screen proteins retrieved from the database. Here we report that the expression of a human protein, named calphoglin, resulted in a significant increase in the phosphorylation of a 55-kDa protein in E. coli. The phosphorylation of the 55-kDa protein was acid-stable and its isoelectric point was determined to be 5.4. The 55-kDa protein was sequentially purified from an E. coli extract using three chromatography and two-dimensional polyacrylamide gel electrophoresis. Finally, the 55-kDa protein was purified 830-fold to homogeneity and the N-terminal amino acid sequence was analyzed. The sequence obtained, AIHNRAGQPAQQ, was identical to the N-terminal amino acids of E. coli phosphoglucomutase (PGM). This method may be applicable to the detection and analysis of other orthologous proteomes.  相似文献   

11.
8-Azido-adenosine 5'-triphosphate (n8(3)ATP) appeared to be a suitable photoaffinity label for the protein kinase dependent on adenosine 3':5'-monophosphate (cAMP). It competes with ATP for the high-affinity ATP site in the undissociated form of the kinase and in the phosphotransferase reaction catalyzed by the catalytic subunit. Furthermore, it is accepted as a substrate in the phosphotransfer reaction. n8(3)ATP incorporated into the holoenzyme is covalently bound irradiation. Protection experiments with ATP indicated that this covalent attachment occurs in the high-affinity ATP site of the enzyme. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate shows that n8(3)ATP is bound to the catalytic subunit. After irradiation the enzyme was dissociated by cAMP. Proportional to the incorporated [gamma-32P]n8(3)ATP, a loss in phosphotransferase activity was found. These results support our model that both ATP sites coincide with respect to their adenine binding part. Thus binding of the regulatory subunit to the catalytic subunit would then transform the low-affinity catalytically active ATP site into a high-affinity inactive site.  相似文献   

12.
The mechanism of inhibition of adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase was studied using a protein inhibitor isolated by a non-denaturing procedure from bovine heart. This protein inhibitor interacts with the catalytic subunit of protein kinase and binds to some substrates of the kinase. Protein kinase activity can also be inhibited by polyanions which, like the protein inhibitor, bind to basic substrates but do not bind to the catalytic subunit of protein kinase. Peptides such as L-lysyl-L-tyrosyl-L-threonine that resemble the phosphate accepting site of protein kinase substrates competitively inhibit phosphorylation of histone. Protein kinase activity can thus be inhibited in vitro by interaction of the protein inhibitor with substrates, and/or the catalytic subunit of the kinase, by competition of substrate analogs with "natural" substrates and by direct interaction of polyanions with basic protein substrates for the phosphotransferase reaction.  相似文献   

13.
Copper deficiency has been reported to cause glucose intolerance in rats by interfering with normal glucose utilization. Accordingly, copper deficiency was produced in rats to study its effects on glucose-6-P phosphohydrolase and carbamyl-P: glucose phosphotransferase activities of hepatic glucose-6-phosphatase (EC 3.1.3.9), a major enzyme involved in maintaining glucose homeostasis. When measured in homogenates treated with deoxycholate, total glucose-6-P phosphohydrolase was 23% lower and total carbamyl-P:glucose phosphotransferase was 17% lower in copper-deficient rats compared to controls. Latency, or that portion of total activity that is not manifest unless the intact membranous components are disrupted with deoxycholate also was lower in copper-deficient rats. Glucose-6-P phosphohydrolase was 5% latent in copper-deficient rats compared to 24% in controls and carbamyl-P : glucose phosphotransferase was 55% latent in copper-deficient rats compared to 65% in controls. The decrease in latency appears to compensate for the lower total enzyme activities in such a manner as to allow the net expression of these activities in the intact membranous components of the homogenate to remain unaltered by copper deficiency. It thus appears unlikely that copper deficiency affects glucose homeostasis in vivo by altering the net rate of glucose-6-P hydrolysis or synthesis by glucose-6-phosphatase. These observations are interpreted on the basis of a multicomponent glucose-6-phosphatase system in which the total enzyme activity expressed in intact membranous preparation is limited by substrate specific translocases that transport substrate to the membrane-bound catalytic unit. A decrease in latency can then be interpreted as a functional increase in translocase activity and may constitute a compensating mechanism for maintaining constant glucose homeostasis when glucose-6-phosphatase catalytic activity is depressed as it is in copper deficiency.  相似文献   

14.
15.
An adenosine 3':5'-monophosphate-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) has been isolated from the human erythrocyte memebrane and the phosphotransferase activity exhibited by this enzyme has been purified 800-fold. In concentrated solutions, the membrane-derived protein kinase undergoes aggregation with a concomitant loss in observed phosphotransferase activity. This loss of activity can be restored by means of inducing deaggregation. The phosphotransferase activity of the protein kinase is virtually obliterated in the presence of high (300 mM) concentrations of sodium chloride. This effect is also reversible. The pH optimum for the phosphotransferase reaction that is catalyzed by the membrane-derived protein kinase is approximately 8. Micromolar concentrations of cAMP are optimal with respect to promoting the phosphotransferase reaction. Initial velocity and product inhibition studies were conducted on the cAMP-independent protein kinase derived from the cAMP-dependent enzyme. These studies indicate that the phosphotransferase reaction proceeds by a sequential kinetic mechanism.  相似文献   

16.
Esa1 is the catalytic subunit of the NuA4 histone acetylase (HAT) complex that acetylates histone H4, and it is a member of the MYST family of HAT proteins that includes the MOZ oncoprotein and the HIV-1 Tat interacting protein Tip60. Here we report the X-ray crystal structure of the HAT domain of Esa1 bound to coenzyme A and investigate the protein's catalytic mechanism. Our data reveal that Esa1 contains a central core domain harboring a putative catalytic base, and flanking domains that are implicated in histone binding. Comparisons with the Gcn5/PCAF and Hat1 proteins suggest a unified mechanism of catalysis and histone binding by HAT proteins, whereby a structurally conserved core domain mediates catalysis, and sequence variability within a structurally related N- and C-terminal scaffold determines substrate specificity.  相似文献   

17.
Rat liver microsomal glucose 6-phosphatase catalyses phosphoryl transfer between D-glucose 6-[(R)-16O,17O,18O]phosphate and D-glucose with retention of configuration at the phosphorus atom. Since individual phosphoryl-transfer steps appear in general to occur with inversion of configuration, this observation is most simply interpreted in terms of a double-displacement mechanism with a phosphoryl-enzyme intermediate. Such an intermediate has been proposed previously from kinetic and 32P-labelling experiments.  相似文献   

18.
The high-affinity binding site for ATP of the holoenzyme of cAMP-dependent protein kinase (type I) from rabbit skeletal muscle has been investigated. Binding affinity of a series of ATP derivatives substituted at different sites in the molecule was determined by competition with tritiated ATP. The results were compared with data available from cAMP derivatives with the same substituents, in order to analyse the electronic and steric features of these two sites on the protein kinase. The comparison revealed significant differences of the effect of substituents towards the two sites. In particular the N6-derivatives of ATP and substituents affecting the gamma-phosphate indicate that the high-affinity ATP site of the protein kinase has similar properties as those found for phosphotransferase sites. The present results are consistent with the supposition that the high-affinity site for ATP on the holoenzyme is congruent with the phosphotransferase site of the catalytic subunit. Upon combination of catalytic and regulatory subunits this site would be transformed into a high-affinity site for ATP with simultaneous blocking of the phosphotransferase activity.  相似文献   

19.
We describe a multifunctional inositol polyphosphate kinase/phosphotransferase from Solanum tuberosum, StITPKalpha (GenBank accession number: EF362784), hereafter called StITPK1. StITPK1 displays inositol 3,4,5,6-tetrakisphosphate 1-kinase activity: K(m) = 27 microM, and V(max) = 19 nmol min(-1) mg(-1). The enzyme displays inositol 1,3,4,5,6-pentakisphosphate 1-phosphatase activity in the absence of a nucleotide acceptor and inositol 1,3,4,5,6-pentakisphosphate-ADP phosphotransferase activity in the presence of physiological concentrations of ADP. Additionally, StITPK1 shows inositol phosphate-inositol phosphate phosphotransferase activity. Homology modelling provides a structural rationale of the catalytic abilities of StITPK1. Inter-substrate transfer of phosphate groups between inositol phosphates is an evolutionarily conserved function of enzymes of this class.  相似文献   

20.
In Pseudomonas aeruginosa PAO1, we have found massive polyphosphate:AMP phosphotransferase activity and polyphosphate:ADP phosphotransferase activity known as the reverse catalytic activity of polyphosphate kinase which participates in polyphosphate synthesis in the bacterium. Biochemical analysis using the partially purified polyphosphate:ADP phosphotransferase has revealed that it is independent of polyphosphate kinase and can function as polyphosphate-dependent nucleoside diphosphate kinase which most prefers GDP to the other three nucleoside diphosphates as a phospho-acceptor. It has been also demonstrated that polyphosphate:AMP phosphotransferase activity marked in the bacterium mainly originates from the combined action of the polyphosphate:ADP phosphotransferase described above and adenylate kinase. Both of the polyphosphate-utilizing activities require short polyP as a phospho-donor whose chain length is <75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号