首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanism of complement cytolysis and the concept of channel-forming proteins   总被引:10,自引:0,他引:10  
Complement damages membranes via the terminal reaction sequence that leads to the formation of membrane-bound, macromolecular C5b-9(m) protein complexes. These complexes represent C5b-8 monomers to which varying numbers of C9 molecules can be bound. Complexes carrying high numbers of C9 (ca. 6/8-12/16?) exhibit the morphology of hollow protein channels. Because they are embedded within the lipid bilayer, aqueous transmembrane pores are generated that represent the primary lesions caused by complement in the target cell membrane. Many other proteins damage membranes by forming channels in a manner analogous to the C5b-9(m) complex. Two prototypes of bacterial exotoxins, Staphylococcus aureus alpha-toxin and streptolysin-O, are discussed in this context, and attention is drawn to the numerous analogies existing among these protein systems. Common to all is the process of self-association of the native proteins to form supramolecular complexes. This event is in turn accompanied by a unique transition of the molecules from a hydrophilic to an amphiphilic state.  相似文献   

2.
The domain structure of human complement protein C9 was investigated by determining the functional activities of the NH2-terminal (C9a) and COOH-terminal (C9b) fragments obtained by cleavage of C9 with alpha-thrombin. The two fragments were separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renatured by dialysis against buffers containing zwitterionic detergents. The C9b fragment produced membranolytic activities in three independent assays. First, it produced single, ion-conducting channels of varying conductances in planar lipid membranes. Most of the channels had an average conductance of 11 picoSiemens and an average lifetime of about 30 s. The channels showed lipid specificity and a 3-fold preference for conducting K+ over Na+. Second, the fragment also caused specific marker release from liposomes which was inhibitable by a C9b-specific monoclonal antibody, and third, it lysed erythrocytes in the absence of a fully assembled C5b-8 complex. The isolated C9a fragment did not produce single channels in planar lipid membranes but was also effective in releasing markers from liposomes and in lysing erythrocytes. Secondary structure predictions indicate the presence of several amphiphilic, "surface-seeking" segments in the primary structure of C9 which are mainly alpha-helices in C9b and beta-sheets in C9a. These results may indicate the presence of surface-binding domains in the NH2-terminal half and channel-forming domains in the COOH-terminal portion of native, monomeric C9.  相似文献   

3.
The complement membrane attack complex (MAC) forms transmembrane pores in pathogen membranes. The first step in MAC assembly is cleavage of C5 to generate metastable C5b, which forms a stable complex with C6, termed C5b-6. C5b-6 initiates pore formation via the sequential recruitment of homologous proteins: C7, C8, and 12–18 copies of C9, each of which comprises a central MAC-perforin domain flanked by auxiliary domains. We recently proposed a model of pore assembly, in which the auxiliary domains play key roles, both in stabilizing the closed conformation of the protomers and in driving the sequential opening of the MAC-perforin β-sheet of each new recruit to the growing pore. Here, we describe an atomic model of C5b-6 at 4.2 Å resolution. We show that C5b provides four interfaces for the auxiliary domains of C6. The largest interface is created by the insertion of an interdomain linker from C6 into a hydrophobic groove created by a major reorganization of the α-helical domain of C5b. In combination with the rigid body docking of N-terminal elements of both proteins, C5b becomes locked into a stable conformation. Both C6 auxiliary domains flanking the linker pack tightly against C5b. The net effect is to induce the clockwise rigid body rotation of four auxiliary domains, as well as the opening/twisting of the central β-sheet of C6, in the directions predicted by our model to activate or prime C6 for the subsequent steps in MAC assembly. The complex also suggests novel small molecule strategies for modulating pathological MAC assembly.  相似文献   

4.
Membrane attack by serum complement normally results in the formation of C5b-9 complexes that are heterogeneous with respect to their C9 content. We here report that an apparently homogeneous population of C5b-9 complexes can be generated through treatment of C5b-7-laden sheep erythrocytes with C8 and C9 for 60 min at 0 degree C. Experiments performed by using radioiodinated C8 and C9 components have indicated that binding of C8 to these target cells is essentially temperature independent. In contrast, when a surplus of C9 molecules is offered to C5b-8 cells, an approximately fourfold to 4.5-fold higher number of C9 molecules become cell bound at 37 degrees C as opposed to 0 degree C. C5b-9 complexes isolated from target membranes treated with C9 at 0 degree C contain no polymerized C9 and do not exhibit the ring structure characteristic of the classical complement lesion. Nevertheless, these complexes generate stable transmembrane channels and cause hemolysis at 37 degrees C. The pores have been sized to 1 to 3 nm effective diameter by osmotic protection experiments. SDS-PAGE of the isolated complexes indicates an average stoichiometry of only one molecule C9 bound per C5b-8 complex. The results show that oligomerization of C9 with formation of ring lesions is not a basic requirement for the generation of stable transmembrane complement pores in sheep erythrocytes. They indirectly support the contention that terminal complement components other than C9 contribute to the intramembrane domains of C5b-9 pores.  相似文献   

5.
Proteolysis of the fluid phase complement complex SC5b-9 transforms it into an arnphiphilic molecule which resembles the membrane attack complex of complement and reconstitutes into lipid vesicles. Complement-containing vesicles prepared in this way can be made to fuse with planar lipid bilayers transferring their protein content to the host membrane. Massive conductance increases can thus be observed, which are due to the insertion of a large number of ionic channels into the membrane. Using low concentrations of vesicles, single channels can be studied.  相似文献   

6.
The effect of nine monoclonal antibodies to complement component C8 on the interaction of C9 with preformed cell-surface C5b-8 complexes and on the functional insertion of C8 into the membrane-attack complex (MAC) was investigated. None of the antibodies prevented C9 insertion into a preformed C5b-8 complex. One antibody (F1) directed to the C8 alpha subunit clearly inhibited formation of a functional MAC. It is proposed that this antibody prevents the C8 alpha subunit unfolding and distorting the bilayer to allow C9 insertion.  相似文献   

7.
Nucleated cells, unlike erythrocytes, are able to survive limited complement attack by eliminating potentially cytolytic complement channels from the plasma membrane (PM) by processes that involve, plasma membrane (PM) by processes that involve, but may not be limited to, endocytosis. The observation that C5b-9 channels, as well as C5b-8 and C5b-7 intermediates, are rapidly eliminated from the cell surface of nucleated cells has prompted us to examine whether terminal complement complexes stimulate membrane events that lead to accelerated elimination of these complexes. We have suggested previously that ion flux through terminal complement complexes might influence the rate of elimination on the basis of our finding that terminal complement complexes with larger functional channel sizes are more rapidly eliminated. In this study, we examined the role of Ca2+ on the elimination rate of terminal complement complexes in the PM of Ehrlich cells, because changes in Ca2+ flux across the PM are known to influence many metabolic activities including endocytosis. To determine the elimination rate for terminal complement complexes by functional analysis, cells bearing C5b-7 or C5b-8 complexes with or without a sublytic dose of C9 were incubated at 37 degrees C for various time intervals before converting the remaining complexes to lytic C5b-9 channels. The initial elimination rates for the terminal complement complexes were compared in the presence of 0.015, 0.15, and 1.5 mM CaCl2 in the medium. Sufficient lowering of the extracellular Ca2+ concentration, (Ca2+)o, resulted in prolonging the elimination of each of the terminal complement complexes to a different extent. The effect of (Ca2+)o on the elimination rate was most pronounced for C5b-8 in the presence of a sublytic number of C5b-9, with less of an effect on C5b-8 alone, and the least effect with C5b-7. The elimination rates for terminal complement complexes were also determined by measuring the persistence of C5b antigen on the cell surface at 37 degrees C in the presence of various (Ca2+)o by using fluorescence-activated cell sorter analysis and were comparable with that obtained by functional analysis. Examination of the effect of terminal complement complexes on the cellular Ca2+ concentration, (Ca2+)i, revealed that these complexes increased the (Ca2+)i in proportion with the known functional pore size of the terminal complement complex in the PM. In addition, Quin 2, which can buffer internal Ca2+ transients, was found to increase the susceptibility of Ehrlich cells to lysis by C5b-9, further suggesting a relationship between the (Ca2+)i and the elimination process.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have visualized by freeze-etch electron microscopy the macromolecular complexes of complement, C5b-8 and C5b-9, respectively, assembled on synthetic phospholipid bilayers. These complexes were formed sequentially by using purified human complement components C5b-6 followed by C7, C8, and C9. Complexes of C5b-8 were observed on the external surface (ES) of vesicles as 12-nm particles that tended to form polydisperse aggregates. The aggregates were sometimes of a regular chainlike structure containing varying numbers of paired subunits. Etching of vesicles containing C5b-9 complexes revealed on the ES large rings of approximately 27-nm outer diameter. One or two knobs usually were attached to the perimeter of the rings. Splitting of the membrane resulted in partitioning of the C5b-9 with the outer leaflet. Thus, round holes of approximately 17-nm diameter were present in the protoplasmic face (PF), and raised circular stumps of a matching size were present on the exoplasmic face (EF) of C5b-9 vesicles. C5b-9 complexes were frequently localized in regions of the lowest lipid order. That is, in micrographs of the EF and ES, single C5b-9 complexes were located where the ripples of the P beta' phase bend or reach a dead end, and linear arrays of C5b-9 complexes outlined disclination-like structures in the lattice; the holes in the PF mirrored this distribution. The membrane immediately surrounding C5b-9 rings was often sunk inwardly over an area much larger than that of the ring itself.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Summary Single-channel analysis of electrical fluctuations induced in planar bilayer membranes by the purified human complement proteins C5b6, C7, C8, and C9 have been analyzed. Reconstitution experiments with lipid bilayer membranes showed that the C5b-9 proteins formed pores only if all proteins were present at one side of the membrane. The complement pores had an average single-channel conductance of 3.1 nS at 0.15m KCl. The histogram of the complement pores suggested a substantial variation of the size of the single channel. The linear relationship between single-channel conductance at fixed ionic strength and the aqueous mobility of the ions in the bulk aqueous phase indicated that the ions move inside the complement pore in a manner similar to the way they move in the aqueous phase. The minimum diameter of the pores as judged from the conductance data is approximately 3 nm. The complement channels showed no apparent voltage control or regulation up to transmembrane potentials of 100 mV. At neutral pH the pore is three to four times more permeable for alkali ions than for chloride, which may be explained by the existence of fixed negatively charged groups in or near the pore. The significance of these observations to current molecular models of the membrane lesion formed by these cytolytic serum proteins is considered.  相似文献   

10.
Assembly of the terminal C5b-C9 complement components into the cytolytic C5b-9 complex is accompanied by exposure of characteristic neoantigens on the macromolecule. We report the production and characterization of mouse monoclonal antibodies to C9-dependent neoantigens of human C5b-9. Binding-inhibition assays with EDTA-human plasma and micro-ELISA assays with purified C9 showed that the antibodies did not react with native complement components and thus confirmed the specificity of the antibodies for the neoantigens. The monoclonal antibodies did, however, cross-react with cytolyticaIly inactive, fluid-phase C5b-9 complexes, Thus, expression of the neoantigenic determinants was not dependent on the formation of high molecular weight C9 polymers with the complex, since these are absent in fluid-phase C5b-9. Radioiodinated antibodies could be utilized in immunoradiometric assays for the detection and quantitation of C5b-9 on cell membranes. Cross-reactivities of the antibodies with C9-dependent neoantigens of several other animal species were examined and antibody clones cross-reacting with rabbit (clones 3BI, 3Dg, and 2F3), sheep (clones 3Dg and 2F3) and guinea-pig (clone 3D8) neoantigens were identified . Three of four tested clones (3D8, 2F3, IA12) precipitated C5b-9 complexes in double-diffusion assays, probably due to their interaction with multiple and repeating C9-epitopes on the terminal complexes. The monoclonal antibodies will be of value for definitive identification and quantitation of C5b-9 on cell membranes and in tissues, and for establishing immunoassays for detection and quantitation of terminal fluid-phase C5b-9 complexes in plasma.  相似文献   

11.
The complement membrane attack complex (MAC) is formed by the sequential assembly of C5b with four homologous proteins as follows: one copy each of C6, C7, and C8 and 12-14 copies of C9. Together these form a lytic pore in bacterial membranes. C6 through C9 comprise a MAC-perforin domain flanked by 4-9 "auxiliary" domains. Here, we report the crystal structure of C6, the first and longest of the pore proteins to be recruited by C5b. Comparisons with the structures of the C8αβγ heterodimer and perforin show that the central domain of C6 adopts a "closed" (perforin-like) state that is distinct from the "open" conformations in C8. We further show that C6, C8α, and C8β contain three homologous subdomains ("upper," "lower," and "regulatory") related by rotations about two hinge points. In C6, the regulatory segment includes four auxiliary domains that stabilize the closed conformation, inhibiting release of membrane-inserting elements. In C8β, rotation of the regulatory segment is linked to an opening of the central β-sheet of its clockwise partner, C8α. Based on these observations, we propose a model for initiation and unidirectional propagation of the MAC in which the auxiliary domains play key roles: in the assembly of the C5b-8 initiation complex; in driving and regulating the opening of the β-sheet of the MAC-performin domain of each new recruit as it adds to the growing pore; and in stabilizing the final pore. Our model of the assembled pore resembles those of the cholesterol-dependent cytolysins but is distinct from that recently proposed for perforin.  相似文献   

12.
Activation of the complement system results in formation of membrane attack complexes (MACs), pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF) domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.  相似文献   

13.
Light-scattering intensity was shown to be a reliable, direct, and quantitative technique for monitoring the assembly of the membrane attack complex of complement (proteins C5b-6, C7, C8, and C9) on small unilamellar phosphatidylcholine vesicles. The assembly on vesicles occurred in a simple fashion; complexes of C5b-7 bound noncooperatively to the vesicles, and final assembly of C5b-9 did not induce vesicle aggregation or fragmentation. When C5b-6 and C7 were mixed in the presence of vesicles but at molar protein/vesicle ratios of less than 1, there was quantitative binding of C5b-7 to the vesicles with no concomitant aggregation of C5b-7. If C7 was added at a slower rate, quantitative binding was obtained at molar C5b-7/vesicle ratios of up to 5. The latter observations (a) were consistent with the proposal that C5b-7 aggregation and membrane binding were competitive events and (b) defined conditions under which light-scattering intensity measurements could monitor C5b-9 assembly on vesicles without contribution from the fluid-phase assembly. The C8/C5b-7 ratio in the phospholipid-C5b-8 complex was 0.97 +/- 0.12, and the maximum ratio of C9/C5b-8 in the final complex was 16.2 +/- 2.0. One C9 molecule associated rapidly with each phospholipid-C5b-8, followed by slower incorporation of the remaining C9 molecules. The initial velocity of the slow phase of C9 addition was easily saturated with C9 and gave an activation energy of 37 kcal/mol. This was identical with the value measured for the analogous process in the fluid-phase assembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A simple and well-defined system of purified phospholipids and human complement proteins was used to study membrane permeability to macromolecules mediated by the membrane attack complex (MAC) of complement. Large unilamellar vesicles (LUVs) of phosphatidylcholine (PC) or phosphatidylserine (PS) containing trapped macromolecules [bovine pancreatic trypsin inhibitor (BPTI), thrombin, glucose-6-phosphate dehydrogenase (G6PD), and larger molecules] were used to monitor permeability. Membrane permeability to macromolecules was measured by thrombin inhibition by an external inhibitor or by separation of released molecules by gel filtration. Membrane-bound intermediates (C5b-8 or C5b-93) were stable for hours, and macromolecular permeability occurred without fragmentation, fusion, or aggregation of the vesicles. Quantitative membrane binding by C5b-7 as well as essentially quantitative release of thrombin was obtained for PS vesicles. MAC binding to PS-LUVs approximated the theoretical Poisson distribution curve for full release of vesicle contents by one complex per vesicle. Reactions with PC-LUVs occurred with some fluid-phase MAC assembly. Therefore, results from experiments with these vesicles were interpreted in a relative manner. However, the values obtained closely corroborated those obtained with PS-LUVs. At low C9/C5b-8 ratios, the size of the lesion was proportional to the C9 content of the MAC. Half-maximum release of BPTI, thrombin, and G6PD, by a single MAC per vesicle, required approximately 3,5, and 7 C9/C5b-8 (mol/mol), respectively. Larger molecules (greater than or equal to 118-A diameter) were not released from the vesicles. Release of G6PD (95.4-A diameter) required 45% of saturating C9. Therefore, it appeared that the last half of the bound C9 molecules did not increase pore size and the pore which released G6PD approached the diameter of the closed circular lesion measured (by others) in electron micrographs (approximately 100 A). The results were consistent with the formation of a stable membrane pore by a single complex per vesicle in which C9 molecules line only one side of the pore at low C9/C5b-8 ratios and maximum pore size is attained by incomplete, noncircular polymers of C9.  相似文献   

15.
P J Sims  T Wiedmer 《Biochemistry》1984,23(14):3260-3267
The fluorescence self-quenching by energy transfer of FITC-C9, a fluoresceinated derivative of human complement protein C9 [Sims, P.J. (1984) Biochemistry (preceding paper in this issue)], has been used to monitor the kinetics of C9 polymerization induced by the membrane-associated complex of complement proteins C5b-8. Time-based measurements of the fluorescence change observed during incubation of FITC-C9 with C5b-8-treated sheep red blood cell ghost membranes at various temperatures revealed that C9 polymerization induced by the C5b-8 proteins exhibits a temperature dependence similar to that previously reported for the complement-mediated hemolysis of these cells, with an Arrhenius activation energy for FITC-C9 polymerization of 13.3 +/- 3.2 kcal mol-1 (mean +/- 2 SD). Similar measurements obtained with C5b-8-treated unilamellar vesicles composed of either egg yolk phosphatidylcholine (egg PC), dipalmitoylphosphatidylcholine (DPPC), or dimyristoylphosphatidylcholine (DMPC) revealed activation energies of between 20 and 25 kcal mol-1 for FITC-C9 polymerization by C5b-8 bound to these membranes. Temperature-dependent rates of C9 polymerization were observed to be largely unaffected by the phase state of membrane lipid in the target C5b-8 vesicles. The significance of these observations of the mechanism of C9 activation of membrane insertion is considered.  相似文献   

16.
We have previously shown that multiple complement (C) channels are required for lysis of a nucleated cell in contrast to the single channel requirement for erythrocytes. To further investigate this multichannel requirement for nucleated cells, we examined the stability of terminal C complexes in the plasma membrane of Ehrlich ascites tumor cells. Ehrlich cells bearing C5b-7 or C5b-8 with or without C9 were incubated at 37 degrees C or 0 degree C for various time intervals before converting the remaining complexes to lytic C5b-9 channels. C5b-7, C5b-8, and C5b-8 in the presence of a limited number of C5b-9 complexes disappeared functionally from the plasma membrane at 37 degrees C, with initial half-lives of 31, 20, and 10 min, respectively. Disappearance of these complexes did not occur at 0 degree C, nor did disappearance occur at 37 degrees C when formed on sheep erythrocytes. The fate of C5b-8 complexes on the surface of Ehrlich cells was traced with colloidal gold particles bound to C5 determinants on C5b-8 with the use of immunoelectron microscopy. Colloidal gold could be seen on the cell surface after specific binding to cells carrying C5b-8 sites at 0 degree C. After incubating these cells at 37 degrees C, gold particles were internalized into the cell continuously via endocytic vesicles. It is postulated that terminal C complexes may stimulate or accelerate the removal of these complexes from the cell surface.  相似文献   

17.
The terminal membrane C5b-9(m) and fluid-phase SC5b-9 complexes of rabbit complement were isolated from target sheep erythrocyte membranes and from inulin-activated rabbit serum respectively. In the electron microscope, rabbit C5b-9(m) was observed as a hollow protein cylinder, a structure identical with that of human C5b-9(m). Monodispersed rabbit C5b-9(m) exhibited an apparent sedimentation coefficient of 29 S in deoxycholate-containing sucrose density gradients, corresponding to a composite protein-detergent molecular-weight of approx. 1.4 X 10(6). Protein subunits corresponding to human C5b-C9 were found on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. By densitometry, there were consistently six molecules of monomeric C9 present for each monomeric C5b-8 complex. Fluid-phase rabbit SC5b-9 was a hydrophilic 23 S ma macromolecule that differed in subunit composition from its membrane counterpart in that it contained S-protein and only two to three molecules of C9 per monomer complex. The data are in accord with the previous report on human C5b-9 that C5b-9(m) contains more C9 molecules than SC5b-9 [Ware & Kolb (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6426-6430]. They corroborate the previous molecular-weight estimate of approx. 10(6) for C5b-9(m) and thus support the concept that the fully assembled, unit lesion of complement is a C5b-9 monomer [Bhakdi & Tranum-Jensen (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1818-1822]. They also show that C9 dimer formation is not required for assembly of the rabbit C5b-9(m) protein cylinder, or for expression of its membrane-damaging function.  相似文献   

18.
Cells resist death induced by the complement membrane attack complex (MAC, C5b-9) by removal of the MAC from their surface by an outward and/or inward vesiculation. To gain an insight into the route of MAC removal, human C9 was tagged with Alexa Fluor 488 and traced within live cells. Tagged C9-AF488 was active in lysis of erythrocytes and K562 cells. Upon treatment of K562 cells with antibody and human serum containing C9-AF488, C9-AF488 containing MAC bound to the cells. Within 5-10 min, the cells started shedding C5b-9-loaded vesicles (0.05-1 mum) by outward vesiculation. Concomitantly, C9-AF488 entered the cells and accumulated in a perinuclear, late recycling compartment, co-localized with endocytosed transferrin-Texas Red. Similar results were obtained with fixed cells in which the MAC was labeled with antibodies directed to a C5b-9 neoepitope. Inhibition of protein kinase C reduced endocytosis of C5b-9. Kinetic analysis demonstrated that peripheral, trypsin-sensitive C5b-9 was cleared from cells at a slower rate relative to fully inserted, trypsin-resistant C5b-9. MAC formation is controlled by CD59, a ubiquitously expressed membrane complement regulator. Analysis at a cell population level showed that the amount of C5b-9-AF488 bound to K562 cells after complement activation was highly heterogeneous and inversely correlated with the CD59 level of expression. Efficient C9-AF488 vesiculation was observed in cells expressing low CD59 levels, suggesting that the protective impact of MAC elimination by vesiculation increases as the level of expression of CD59 decreases.  相似文献   

19.
Human beta-endorphin (beta H-EP) is demonstrated to bind to the "preterminal" SC5b-7 and SC5b-8 complexes and to the terminal SC5b-9 complex of human complement. Detailed binding studies revealed saturability, reversibility and structural specificity of the beta H-EP interaction with high or low affinity non-opiate binding sites on SC5b-7 and SC5b-9 complexes. The high affinity binding sites seem to be located predominantly on C5b, C6 or C7 subunits of the complexes.  相似文献   

20.
The number of membrane-bound terminal complement proteins (C5b-9) required to generate a functional pore in the human erythrocyte membrane ghost has been determined. Resealed erythrocyte ghost membranes (ghosts) were treated with human complement proteins C5b6, C7, 131I-C8, and 125I-C9 under non-lytic conditions. Following C5b-9 assembly, sucrose-permeant ghosts were separated from C5b-9 ghosts that remained impermeant to sucrose by centrifugation over density barriers formed of 43% (w/v) sucrose. Analysis of 131I-C8 and 125I-C9 bound to sucrose-permeant and sucrose-impermeant subpopulations of C5b-9 ghosts revealed: 1. Sucrose-permeant C5b-9 ghosts show increased uptake of both 131I-C8 and 125I-C9 as compared to ghosts that remain impermeant to sucrose. Ghosts with less than 300 molecules 131I-C8 bound remain impermeant to sucrose, irrespective of the total C9 input, or, the multiplicity of C9 uptake by membrane C5b-8. 2. In the presence of excess 125I-C9, the ratio of 125I-C9/131I-C8 bound to membrane C5b67 is 3.2 ± 0.8 (mean ± 2 S.D.), suggesting an average stoichiometry of 3 C9 per C5b-8. Under these conditions, the ratio of 125I-C9/131I-C8 bound to sucrose-permeant ghosts (3.3 ± 0.7) does not significantly differ from the ratio bound to sucrose-impermeant ghosts (2.9 ± 0.6). 3. With limiting C9 input, the threshold of total C5b-8 uptake required for sucrose permeability increases significantly above 300 per cell when the ratio of bound 125I-C9/131I-C8 is decreased below unity. In the complete absence of C9, 11 700 C5b-8 complexes are bound to sucrose-permeant ghosts. It is concluded that more than 300 C5b-9 complexes must bind to the human erythrocyte to form a sucrose-permeant lesion. Although the binding of one C9 per C5b-8 is critical to the pore-forming activity of these proteins, the binding of additional molecules of C9 to each complex (C9/C8 > 1) does not significantly alter the threshold of total C5b-9 uptake required for lesion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号