首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Chronic hepatitis B virus (HBV) infection is the major risk for hepatocellular carcinomas (HCC). HBV X protein (HBx) and p53 tumor suppressor family interactions may be crucial for HCC induction. We compared p53 and p73 interactions with HBx in normal and HCC tumor cell lines differing in their p53 status. In the latter, HBx was pro-apoptotic but exhibited opposite effects in non-tumor cells. In these normal cells, p53 and p73 were retained in the cytoplasm. In hepatoma cells, however, HBx led to nuclear translocation of p53 and p73, followed by enhanced transactivation of p53-dependent promoters. The nuclear transfer of p53, but not of p73, was abrogated by protein kinase C inhibitor Gö6976. HBx overexpression in HCC cells led to strong p53 phosphorylation at Ser15, but not in non-tumor cells. Our results define ATM kinase as mediator for HBx-induced p53 phosphorylation. While HBx promotes cell death in p53/p73-positive hepatoma cells also in presence of increased levels of the oncogenic ΔTAp73 isoform, it significantly potentiates ΔTAp73-mediated proliferation and malignant transformation of fibroblasts. Our data suggest that prevention of apoptosis in normal cells by HBx through inhibition of pro-apoptotic p53 family members via direct interaction and coaction with anti-apoptotic ΔTAp73 seems to be the key element in the decision in favor of cell survival. The complex cell context-dependent interactions between p53 family members and HBx in the regulation of apoptosis may be essential in HBV-induced HCC and anticancer therapy.  相似文献   

2.
Liu Q  Chen J  Liu L  Zhang J  Wang D  Ma L  He Y  Liu Y  Liu Z  Wu J 《The Journal of biological chemistry》2011,286(19):17168-17180
The X protein (HBx) of hepatitis B virus (HBV) is involved in the development of hepatocellular carcinoma (HCC), and methionine adenosyltransferase 2A (MAT2A) promotes the growth of liver cancer cells through altering S-adenosylmethionine homeostasis. Thus, we speculated that a link between HBx and MAT2A may contribute to HCC development. In this study, the effects of HBx on MAT2A expression and cell apoptosis were investigated, and the molecular mechanism by which HBx and MAT2A regulate tumorigenesis was evaluated. Results from immunohistochemistry analyses of 37 pairs of HBV-associated liver cancer tissues/corresponding peritumor tissues showed that HBx and MAT2A are highly expressed in most liver tumor tissues. Our in vitro results revealed that HBx activates MAT2A expression in a dose-dependent manner in hepatoma cells, and such regulation requires the cis-regulatory elements NF-κB and CREB on the MAT2A gene promoter. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) further demonstrated that HBx facilitates the binding of NF-κB and CREB to MAT2A gene promoter. In addition, overexpression of HBx or MAT2A inhibits cell apoptosis, whereas knockdown of MAT2A expression stimulates apoptosis in hepatoma cells. Furthermore, we demonstrated that HBx reduces MAT1A expression and AdoMet production but enhances MAT2β expression. Thus, we proposed that HBx activates MAT2A expression through NF-κB and CREB signaling pathways to reduce AdoMet production, inhibit hepatoma cell apoptosis, and perhaps enhance HCC development. These findings should provide new insights into our understanding how the molecular mechanisms underline the effects of HBV infection on the production of MAT2A and the development of HCC.  相似文献   

3.
The oncogenic hepatitis B virus X protein (HBx) and cyclooxygenase (COX)-2 are highly co-expressed in chronic hepatitis, cirrhosis and well-differentiated hepatocellular carcinoma (HCC). Although HBx is shown to activate COX-2, the functional consequences of this interaction in hepatocarcinogenesis remain unknown. Using an engineered hepatoma cell system in which the expression of wild-type p53 can be chemically modulated, we show here that COX-2 mediates HBx actions in opposing p53. Enforced expression of HBx sequestrates p53 in the cytoplasm and significantly abolishes p53-induced apoptosis. The anti-apoptotic Mcl-1 protein is suppressed by p53 but reactivated by HBx. The abrogation of apoptosis is completely reversed by specific COX-2 inhibition, suggesting that HBx blocks p53-induced apoptosis via activation of COX-2/PGE2 pathway. We further show that COX-2 inhibition blocks HBx reactivation of Mcl-1, linking this protein to the anti-apoptotic function of COX-2. These results demonstrate that COX-2 is an important survival factor mediating the oncogenic actions of HBx. Over-expression of HBx and COX-2 may provide a selective clonal advantage for preneoplastic or neoplastic hepatocytes and contribute to the initiation and progression of HCC.  相似文献   

4.
ObjectivesWe investigated the effects of xeroderma pigmentosum D (XPD) on the growth of hepatoma cells and the expressions of P21, Bax, Bcl-2 and Hepatitis B virus X protein (HBx). In addition, we examined whether XPD affected the aforementioned genes via the P53 pathway.MethodsHuman hepatoma cells (HepG2.2.15) were transfected with XPD expression vector, followed by incubation with Pifithrin-α (P53 inhibitor). By using RT-PCR and Western blotting, the expression levels of XPD, P53, phospho-P53 (ser-15), P21, Bax, Bcl-2 and HBx were detected. The cell cycle and the apoptosis rate were examined with flow cytometry, and the cell viability was detected by MTT.ResultsOver-expression of XPD up-regulated the expressions of P53, phospho-P53 (ser-15), P21 and Bax but down-regulated the expressions of Bcl-2 and HBx. XPD inhibited the viability of HepG2.2.15 and exacerbated the apoptosis. However, the inhibition of P53 by Pifithrin-α abolished the above-mentioned effects of XPD.ConclusionXPD could suppress growth of hepatoma cells, up-regulate the expressions of P21 and Bax, and down-regulate the expressions of Bcl-2 and HBx through the P53 pathway. There may be mutual influences among XPD, P53 and HBx that co-regulate hepatocarcinogenesis.  相似文献   

5.
6.
Long noncoding RNAs (lncRNAs) play crucial roles in human cancers. It has been reported that lncRNA highly up-regulated in liver cancer (HULC) is dramatically up-regulated in hepatocellular carcinoma (HCC). Hepatitis B virus X protein (HBx) contributes importantly to the development of HCC. However, the function of HULC in HCC mediated by HBx remains unclear. Here, we report that HULC is involved in HBx-mediated hepatocarcinogenesis. We found that the expression levels of HULC were positively correlated with those of HBx in clinical HCC tissues. Moreover, we revealed that HBx up-regulated HULC in human immortalized normal liver L-O2 cells and hepatoma HepG2 cells. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay showed that HBx activated the HULC promoter via cAMP-responsive element-binding protein. We further demonstrated that HULC promoted cell proliferation by methyl thiazolyl tetrazolium, 5-ethynyl-2'-deoxyuridine, colony formation assay, and tumorigenicity assay. Next, we hypothesized that HULC might function through regulating a tumor suppressor gene p18 located near HULC in the same chromosome. We found that the mRNA levels of p18 were inversely correlated with those of HULC in the above clinical HCC specimens. Then, we validated that HULC down-regulated p18, which was involved in the HULC-enhanced cell proliferation in vitro and in vivo. Furthermore, we observed that knockdown of HULC could abolish the HBx-enhanced cell proliferation through up-regulating p18. Thus, we conclude that the up-regulated HULC by HBx promotes proliferation of hepatoma cells through suppressing p18. This finding provides new insight into the roles of lncRNAs in HBx-related hepatocarcinogenesis.  相似文献   

7.
乙型肝炎病毒X蛋白(hepatitis B virus X protein,HBx)对肝癌的发生发展具有十分重要的作用. HBx 具有促进肝癌迁移的作用,但其作用的分子机制不清. 本研究对 HBx 促进肝癌细胞迁移的分子机制进行了探讨. 伤口愈合和 Boyden’s chamber结果表明,HBx 可明显促进肝癌 HepG2 细胞迁移. 在稳定转染 HBx 的 HepG2(HepG2-X)细胞中转染 HBx 结合蛋白(hepatitis B X-interacting protein,HBXIP)的 RNA 干扰片段,可明显抑制 HBx 的促迁移作用. 免疫组化和实时定量 PCR 结果表明,HBXIP 在肝癌组织中显著高表达,并且与 HBx 表达成正相关. 荧光素酶报告基因和免疫印迹结果表明,HBx 显著增强 HBXIP 的启动子活性和蛋白质表达水平. 应用 HBx 的 RNA 干扰处理 HepG2-X 细胞,HBXIP 的启动子活性和蛋白质表达水平明显下降.将 HBXIP 启动子区的cAMP效应元件结合因子(CREB)结合位点突变后,HBx 上调 HBXIP 的作用消失. 应用 CREB 的 RNA 干扰处理肝癌细胞,在启动子水平和蛋白质水平上, HBx 对 HBXIP 的上调作用被显著抑制. 染色质免疫共沉淀结果表明,HBx 能够通过 CREB 结合到 HBXIP 的启动子上,进而发挥激活 HBXIP 的功能. 本研究结果表明,HBx 促进肝癌细胞迁移的作用是通过 CREB 上调 HBXIP 实现的. 这一发现对进一步揭示 HBx 促进肝癌细胞迁移的分子机制具有重要意义.  相似文献   

8.
9.
HBXIP基因对乙肝病毒X蛋白诱导细胞凋亡的影响   总被引:4,自引:2,他引:4  
探讨乙型肝炎病毒X蛋白结合蛋白(hepatitisBXinteractingprotein ,HBXIP)基因在乙型肝炎病毒X蛋白(HBX)诱导肝癌细胞凋亡时对细胞周期的影响.构建HBXIP基因真核表达载体pcDNA3 hbxip ,进行瞬时基因转染,将克隆有HBx基因的pCMV X (分别为1μg、2 μg和3μg)和pcDNA3 hbxip质粒分别和共转染至人H74 0 2肝癌细胞中(总体积分别为5 0 μl) .发现瞬时转染3μgpCMV X质粒后,肝癌细胞凋亡发生率为34 4 % ,肝癌细胞的细胞周期相关蛋白p2 7表达水平发生明显上调;与对照组相比,瞬时转染1μg、2 μg和3μg时,细胞周期蛋白D和细胞周期蛋白E的表达水平均发生明显上调,但随着HBX水平的增加细胞周期蛋白D和细胞周期蛋白E的表达水平发生明显下降;在稳定转染pCMV X质粒的H74 0 2 X肝癌细胞中无明显的细胞凋亡发生,研究发现p2 7的表达水平发生了明显下调,而细胞周期蛋白D和细胞周期蛋白E的表达水平发生了明显上调;当pcDNA3 hbxip质粒与pCMV X质粒进行共瞬时转染时,细胞凋亡发生率由pcDNA3质粒与pCMV X质粒共转染时的2 9 2 %下降为13 3% ,p2 7的表达水平发生了下调,但细胞周期蛋白D和细胞周期蛋白E的表达水平无明显变化.研究结果表明,瞬时转染一定剂量的x基因可导致肝癌细胞发生凋亡,细胞周期相关蛋白p2 7、细胞周期蛋白D和  相似文献   

10.
Mutational inactivation of the tumor suppressor gene p53 is common in hepatocellular carcinomas (HCC). AGG to AGT transversion in codon 249 of exon 7 of the p53 gene occurs in over 50% of HCC from endemic regions, where both chronic infection with the hepatitis B virus (HBV) and exposure to carcinogens such as aflatoxin B1 (AFB1) prevail. In this study, we report the effect of the HBV x protein (HBx) on carcinogen-induced cytotoxicity and AGG to AGT mutation in codon 249 of the p53 gene in the human liver cell line CCL13. Expression of HBx, as revealed by its transactivation function, results in enhanced cell susceptibility to cytotoxicity induced by the AFB1 active metabolite, AFB1-8,9-epoxide, and benzo(a)pyrene diol-epoxide. Under similar conditions, expression of HBx promotes apoptosis in a subset of cell population. Exposure to AFB1-8, 9-epoxide alone induces a low frequency of AGG to AGT mutation in codon 249 of the p53 gene, as determined by an allele-specific polymerase chain reaction (AS-PCR) assay. However, expression of HBx enhances the frequency of AFB1-epoxide-induced AGG to AGT mutation compared to control cells. In summary, this study demonstrates that expression of HBx enhances liver cell susceptibility to carcinogen-induced mutagenesis, possibly through alteration of the balance between DNA repair and apoptosis, two cellular defense mechanisms against genotoxic stress.  相似文献   

11.
The mutant of virus is a frequent event. Hepatitis B virus X protein (HBx) plays a vital role in the development of hepatocellular carcinoma (HCC). Therefore, the identification of potent mutant of HBx in hepatocarcinogenesis is significant. Previously, we identified a natural mutant of the HBx gene (termed HBxΔ127). Relative to wild type HBx, HBxΔ127 strongly enhanced cell proliferation and migration in HCC. In this study, we aim to explore the mechanism of HBxΔ127 in promotion of proliferation of hepatoma cells. Our data showed that both wild type HBx and HBxΔ127 could increase the expression of miR-215 in hepatoma HepG2 and H7402 cells. However, HBxΔ127 was able to significantly increase miR-215 expression relative to wild type HBx in the cells. We identified that protein tyrosine phosphatase, receptor type T (PTPRT) was one of the target genes of miR-215 through targeting 3′UTR of PTPRT mRNA. In function, miR-215 was able to promote the proliferation of hepatoma cells. Meanwhile anti-miR-215 could partially abolish the enhancement of cell proliferation mediated by HBxΔ127 in vitro. Knockdown of PTPRT by siRNA could distinctly suppress the decrease of cell proliferation mediated by anti-miR-215 in HepG2-XΔ127/H7402-XΔ127 cells. Moreover, we found that anti-miR-215 remarkably inhibited the tumor growth of hepatoma cells in nude mice. Collectively, relative to wild type HBx, HBxΔ127 strongly enhances proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Our finding provides new insights into the mechanism of HBx mutant HBxΔ127 in promotion of proliferation of hepatoma cells.  相似文献   

12.
13.
14.
15.
Hepatitis B virus X (HBx) protein is known as an oncogenic transactivator, E2F1 as a positive regulator of the cell cycle, and pRb as a tumor suppressor. Here, we investigated the functional interactions of these proteins on the human Rb promoter. Interestingly, HBx transactivated the Rb promoter cooperatively with E2F1 in HepG2 cells but not in HeLa cells, in which the functions of p53 and pRb are inactive. Combinatorial cotransfection analyses in HepG2 cells showed that HBx overcame the inhibition of E2F1 activity by pRb but not that by p53. Domain analysis showed that aa 47-70 and aa 117-133 of HBx are important for this effect. These results suggest that HBx could inhibit the pRb tumor suppressor and increase E2F1 activity. Our data support the oncogenic potential of HBx, which may cause HBV-infected cells to grow continuously in the development of hepatocellular carcinoma.  相似文献   

16.
17.
The hepatitis B virus-X protein (HBx) regulates fundamental aspects of mitochondrial physiology. We show that HBx down-regulates mitochondrial enzymes involved in electron transport in oxidative phosphorylation (complexes I, III, IV, and V) and sensitizes the mitochondrial membrane potential in a hepatoma cell line. HBx also increases the level of mitochondrial reactive oxygen species and lipid peroxide production. HBx does not activate apoptotic signaling, although it sensitizes hepatoma cells to apoptotic signaling, which is dependent on reactive oxygen species. Increased intrahepatic lipid peroxidation in HBx transgenic mice demonstrated that oxidative injury occurs as a direct result of HBx expression. Therefore, we conclude that mitochondrial dysfunction is a crucial pathophysiological factor in HBx-expressing hepatoma cells and provides an experimental rationale in the investigation of mitochondrial function in rapidly renewed tissues, as in hepatocellular carcinomas.  相似文献   

18.
19.
Despite the extensive studies on the roles of hepatitis B virus X protein (HBx), the effects of HBx on the important cellular processes such as cell growth, cell transformation and apoptosis remain controversial. Our previous study showed that the balance between p53-dependent activation and p53-independent repression by HBx determines the expression level of cyclin-dependent kinase inhibitor p21. In the present study, we further demonstrate that HBx natural variants have differential effects on p21 expression. The critical sites in HBx were identified as residues Ser-101 for activation and Met-130 for repression, respectively. The HBx variants with Ser-101 instead of Pro-101 stabilized p53 more efficiently, probably by protecting it from the MDM2-mediated degradation. On the other hand, the Met-130-containing HBx strongly repressed p21 expression by inhibiting Sp1 activity. Overall, the effect of HBx on p21 expression seems to be determined by the balance between the opposite activities. Depending on their potentials to regulate p21 expression, HBx variants showed different effects on the cell cycle progression, and eventually on the cell growth rate, implicating its biological significance. The present study may provide a clue to explaining the contradictory results related to cell growth regulation by HBx as well as to understanding the progression of hepatic diseases in HBV-positive patients.  相似文献   

20.
The X protein from a chronic strain of hepatitis B virus (HBx) was determined to inhibit Fas-mediated apoptosis and promote cell survival. Fas-mediated apoptosis is the major cause of hepatocyte damage during liver disease. Experiments demonstrated that cell death caused by anti-Fas antibodies was blocked by the expression of HBx in human primary hepatocytes and mouse embryo fibroblasts. This effect was also observed in mouse erythroleukemia cells that lacked p53, indicating that protection against Fas-mediated apoptosis was independent of p53. Components of the signal transduction pathways involved in this protection were studied. The SAPK/JNK pathway has previously been suggested to be a survival pathway for some cells undergoing Fas-mediated apoptosis, and kinase assays showed that SAPK activity was highly up-regulated in cells expressing the HBx protein. Normal mouse fibroblasts expressing HBx were protected from death, whereas identical fibroblasts lacking the SEK1 component from the SAPK pathway succumbed to Fas-mediated apoptosis, whether HBx was present or not. Assays showed that caspase 3 and 8 activities and the release of cytochrome c from mitochondria were inhibited, in the presence of HBx, following stimulation with anti-Fas antibodies. Coprecipitation and confocal immunofluorescence microscopy experiments demonstrated that HBx localizes with a cytoplasmic complex containing MEKK1, SEK1, SAPK, and 14-3-3 proteins. Finally, mutational analysis of HBx demonstrated that a potential binding region for 14-3-3 proteins was essential for induction of SAPK/JNK activity and protection from Fas-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号