首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serpins are members of a family of structurally related protein inhibitors of serine proteinases, with molecular masses between 40 and 100kDa. In contrast to other, simpler, proteinase inhibitors, they may interact with proteinases as inhibitors, as substrates, or as both. They undergo conformational interconversions upon complex formation with proteinase, upon binding of some members to heparin, upon proteolytic cleavage at the reactive center, and under mild denaturing conditions. These conformational changes appear to be critical in determining the properties of the serpin. The structures and stabilities of these various forms may differ significantly. Although the detailed structural changes required for inhibition of proteinase have yet to be worked out, it is clear that the serpin does undergo a major conformational change. This is in contrast to other, simpler, families of protein inhibitors of serine proteinases, which bind in a substrate-like or product-like manner. Proteolytic cleavage of the serpin can result in a much more stable protein with new biological properties such as chemo-attractant behaviour. These structural transformations in serpins provide opportunities for regulation of the activity and properties of the inhibitor and are likely be important in vivo, where serpins are involved in blood coagulation, fibrinolysis, complement activation and inflammation.  相似文献   

2.
The protease inhibitor neuroserpin regulates the development of the nervous system and its plasticity in the adult. Neuroserpins carrying the Ser53Pro or Ser56Arg mutation form polymers in neuronal cells. We describe here the structure of wild-type neuroserpin in a cleaved form. The structure provides a basis to understand the role of the mutations in the polymerization process. We propose that these mutations could delay the insertion of the reactive center loop into the central beta-sheet A, an essential step in the inhibition and possibly in the polymerization of neuroserpin.  相似文献   

3.
The function of the serpins as proteinase inhibitors depends on their ability to insert the cleaved reactive centre loop as the fourth strand in the main A beta-sheet of the molecule upon proteolytic attack at the reactive centre, P1-P1'. This mechanism is vulnerable to mutations which result in inappropriate intra- or intermolecular loop insertion in the absence of cleavage. Intermolecular loop insertion is known as serpin polymerisation and results in a variety of diseases, most notably liver cirrhosis resulting from mutations of the prototypical serpin alpha1-antitrypsin. We present here the 2.6 A structure of a polymer of alpha1-antitrypsin cleaved six residues N-terminal to the reactive centre, P7-P6 (Phe352-Leu353). After self insertion of P14 to P7, intermolecular linkage is affected by insertion of the P6-P3 residues of one molecule into the partially occupied beta-sheet A of another. This results in an infinite, linear polymer which propagates in the crystal along a 2-fold screw axis. These findings provide a framework for understanding the uncleaved alpha1-antitrypsin polymer and fibrillar and amyloid deposition of proteins seen in other conformational diseases, with the ordered array of polymers in the crystal resulting from slow accretion of the cleaved serpin over the period of a year.  相似文献   

4.
BACKGROUND: Argininosuccinate synthetase (AS) is the rate-limiting enzyme of both the urea and arginine-citrulline cycles. In mammals, deficiency of AS leads to citrullinemia, a debilitating and often fatal autosomal recessive urea cycle disorder, whereas its overexpression for sustained nitric oxide production via the arginine-citrulline cycle leads to the potentially fatal hypotension associated with septic and cytokine-induced circulatory shock. RESULTS: The crystal structure of E. coli AS (EAS) has been determined by the use of selenomethionine incorporation and MAD phasing. The structure has been refined at 1.6 A resolution in the absence of its substrates and at 2.0 A in the presence of aspartate and citrulline (EAS*CIT+ASP). Each monomer of this tetrameric protein has two structural domains: a nucleotide binding domain similar to that of the "N-type" ATP pyrophosphatase class of enzymes, and a novel catalytic/multimerization domain. The EAS*CIT+ASP structure clearly describes the binding of citrulline at the cleft between the two domains and of aspartate to a loop of the nucleotide binding domain, whereas homology modeling with the N-type ATP pyrophosphatases has provided the location of ATP binding. CONCLUSIONS: The first three-dimensional structures of AS are reported. The fold of the nucleotide binding domain confirms AS as the fourth structurally defined member of the N-type ATP pyrophosphatases. The structures identify catalytically important residues and suggest the requirement for a conformational change during the catalytic cycle. Sequence similarity between the bacterial and human enzymes has been used for providing insight into the structural and functional effects of observed clinical mutations.  相似文献   

5.
Bleomycin (Bm)-binding protein, designated BLMA, which is a Bm resistance determinant from Bm-producing Streptomyces verticillus, was crystallized in a form suitable for X-ray diffraction analysis. The diffraction intensity data were collected up to a resolution of 1.5 A with a merging R-value of 0.054 at a completeness of 94 %. The BLMA structure, determined by the single isomorphous replacement method including the anomalous scattering effect (SIR-AS) at a resolution of 2.0 A, was refined at 1.5 A resolution. The final R-factor was 19.0 % and R(free) was 22.1 % including 91 water molecules. The crystal packing showed a dimer form, which was generated by arm exchange. The 1.5 A high-resolution experiment allowed an analysis of the side-chain disorder of BLMA. The structural comparison of BLMA with a homologous protein from Streptoalloteichus hindustanus, designated Shble protein, showed that a Ser100-Gly103 loop was farther from the groove, which is a Bm-binding site, in BLMA than in the Shble protein. Furthermore the hydrophobicity of the groove in BLMA is much lower than that in the Shble protein. The structural differences between these proteins may be responsible for the observation that a half-saturating concentration (K(1/2)) of Bm is higher for BLMA than for the Shble protein.  相似文献   

6.
The mechanism of binding of thyroid hormones by the transport protein transthyretin (TTR) in vertebrates is structurally well characterised. However, a homologous family of transthyretin-like proteins (TLPs) present in bacteria as well as eukaryotes do not bind thyroid hormones, instead they are postulated to perform a role in the purine degradation pathway and function as 5-hydroxyisourate hydrolases. Here we describe the 2.5 Angstroms X-ray crystal structure of the TLP from the Gram-negative bacterium Salmonella dublin, and compare and contrast its structure with vertebrate TTRs. The overall architecture of the homotetramer is conserved and, despite low sequence homology with vertebrate TTRs, structural differences within the monomer are restricted to flexible loop regions. However, sequence variation at the dimer-dimer interface has profound consequences for the ligand binding site and provides a structural rationalisation for the absence of thyroid hormone binding affinity in bacterial TLPs: the deep, negatively charged thyroxine-binding pocket that characterises vertebrate TTR contrasts with a shallow and elongated, positively charged cleft in S. dublin TLP. We have demonstrated that Sdu_TLP is a 5-hydroxyisourate hydrolase. Furthermore, using site-directed mutagenesis, we have identified three conserved residues located in this cleft that are critical to the enzyme activity. Together our data reveal that the active site of Sdu_TLP corresponds to the thyroxine binding site in TTRs.  相似文献   

7.
BACKGROUND: Plasminogen activator inhibitor 2 (PAI-2) is a member of the serpin family of protease inhibitors that function via a dramatic structural change from a native, stressed state to a relaxed form. This transition is mediated by a segment of the serpin termed the reactive centre loop (RCL); the RCL is cleaved on interaction with the protease and becomes inserted into betasheet A of the serpin. Major questions remain as to what factors facilitate this transition and how they relate to protease inhibition. RESULTS: The crystal structure of a mutant form of human PAI-2 in the stressed state has been determined at 2.0 A resolution. The RCL is completely disordered in the structure. An examination of polar residues that are highly conserved across all serpins identifies functionally important regions. A buried polar cluster beneath betasheet A (the so-called 'shutter' region) is found to stabilise both the stressed and relaxed forms via a rearrangement of hydrogen bonds. CONCLUSIONS: A statistical analysis of interstrand interactions indicated that the shutter region can be used to discriminate between inhibitory and non-inhibitory serpins. This analysis implied that insertion of the RCL into betasheet A up to residue P8 is important for protease inhibition and hence the structure of the complex formed between the serpin and the target protease.  相似文献   

8.
Many of the Firmicutes bacteria responsible for plant polysaccharide degradation in Nature produce a multiprotein complex called a cellulosome, which co-ordinates glycoside hydrolase assembly, bacterial adhesion to substrate and polysaccharide hydrolysis. Cellulosomal proteins possess a dockerin module, which mediates their attachment to the scaffoldin protein via its interaction with cohesin modules, and only glycoside hydrolases and other carbohydrate active enzymes were known to reside within the cellulosome. We show here with Clostridium thermocellum ATCC 27405 that members of the serpin superfamily of serine proteinase inhibitors, which are best recognized for their conformational flexibility and co-ordination of key regulatory functions in multicellular eukaryotes, also reside within the cellulosome. These studies are the first to expand the cellulosome paradigm of protein complex assembly beyond glycoside hydrolase and carbohydrate active enzymes, and to include a newly identified functionality in the Firmicutes.  相似文献   

9.
1H and 31P NMR spectroscopies have been used to examine the effects of limited proteolysis with subtilisin Carlsberg on the global conformation of ovalbumin and on the local environment of phosphoserine 344, a residue two positions removed from the site of proteolysis. Such limited proteolysis has been shown to result in excision of a hexapeptide from the region of the protein that, in other serine protease inhibitors (serpins), contains the reactive center. Based on the structure of the related serpin alpha 1-antitrypsin, it has been predicted that phosphoserine 344 should undergo a large change in environment upon proteolysis of ovalbumin (L?bermann, H., Tokuoka, R., Deisenhofer, J., and Huber, R. (1984) J. Mol. Biol. 177, 531-550). Proteolysis of ovalbumin produces a small upfield shift (0.15 ppm) of the 31P resonance of phosphoserine 344. In addition, the pKa of phosphoserine 344 is raised by 0.1 pH unit. At pH 8.5, phosphoserine 344 in cleaved ovalbumin (plakalbumin) is as accessible to hydrolysis by Escherichia coli alkaline phosphatase as it is in native ovalbumin. 1H NMR shows that dephosphorylation of serine 344 has an imperceptible effect on the protein's conformation. Similarly, little effect on conformation is seen by 1H NMR upon proteolysis of ovalbumin. These findings suggest that ovalbumin does not undergo a marked conformational change analogous to that inferred for the related members of the serpin superfamily, alpha 1-antitrypsin and antithrombin III, nor do the residues close to the site of proteolysis appear to change environment from that of an exposed loop to a buried strand of beta-sheet. These findings are not consistent with the hypothesis of Carrell and Owen ((1985) Nature 317, 730-732) for the role of the exposed loop in serpins of directly facilitating conformational change upon cleavage of the loop. Instead, it is proposed that cleavage of the exposed loop alters the solvent accessibility of residues formerly covered by the loop and that this provides the thermodynamic impetus for conformational change, perhaps by disruption of a salt bridge crucial to the integrity of the native structure.  相似文献   

10.
R L Campbell  G A Petsko 《Biochemistry》1987,26(26):8579-8584
The structure of native bovine pancreatic ribonuclease A, without the inhibitory sulfate anion normally bound at the active site, has been determined by X-ray diffraction at 1.53-A resolution. Treatment of a crystal of ribonuclease containing sulfate with an alkaline buffer released most of the sulfate anions. On return to active pH, few of the side chains moved, and the backbone structure remained unchanged. The active site conformation was essentially unchanged except for the replacement of the sulfate anion by a water molecule, which is hydrogen-bonded to histidine-12 and to another water, and for a small movement of the side chain of lysine-41. Histidines-12 and -119, the catalytic basic and acidic residues, have not moved. Thus the distance between them, and the presence of an intervening water, prohibits the possibility of their being hydrogen-bonded together. The structure has been refined by restrained least squares to an R factor of 0.17. Analysis of individual atomic temperature factors indicates that the molecule has become less rigid in general but that some regions were particularly affected by loss of the sulfate, while others were relatively unaffected. The active site geometry of native ribonuclease A supports the original in-line mechanism of Rabin and co-workers and is in disagreement with the adjacent mechanism of Witzel and co-workers.  相似文献   

11.
Shibata N  Masuda J  Morimoto Y  Yasuoka N  Toraya T 《Biochemistry》2002,41(42):12607-12617
Substrate binding triggers catalytic radical formation through the cobalt-carbon bond homolysis in coenzyme B12-dependent enzymes. We have determined the crystal structure of the substrate-free form of Klebsiella oxytoca diol dehydratase*cyanocobalamin complex at 1.85 A resolution. The structure contains two units of the heterotrimer consisting of alpha, beta, and gamma subunits. As compared with the structure of its substrate-bound form, the beta subunits are tilted by approximately 3 degrees and cobalamin is also tilted so that pyrrole rings A and D are significantly lifted up toward the substrate-binding site, whereas pyrrole rings B and C are only slightly lifted up. The structure revealed that the potassium ion in the substrate-binding site of the substrate-free enzyme is also heptacoordinated; that is, two oxygen atoms of two water molecules coordinate to it instead of the substrate hydroxyls. A modeling study in which the structures of both the cobalamin moiety and the adenine ring of the coenzyme were superimposed onto those of the enzyme-bound cyanocobalamin and the adenine ring-binding pocket, respectively, demonstrated that the distortions of the Co-C bond in the substrate-free form are already marked but slightly smaller than those in the substrate-bound form. It was thus strongly suggested that the Co-C bond becomes largely activated (labilized) when the coenzyme binds to the apoenzyme even in the absence of substrate and undergoes homolysis through the substrate-induced conformational changes of the enzyme. Kinetic coupling of Co-C bond homolysis with hydrogen abstraction from the substrate shifts the equilibrium to dissociation.  相似文献   

12.
Intercellular structure in a many-celled magnetotactic prokaryote   总被引:5,自引:0,他引:5  
A many-called magnetotactic prokaryote obtained from brackish water was observed to possess intercellular connections at points of contact between the outer membranes of constituent cells. Each aggregate organism consisted of 10 to 30 individual Gram-negative cells containing material with the appearance of poly--hydroxybutyrate and magnetosomes of unusual arrangement, structure and composition. The aggregate, which possessed prokaryotic-type flagella arranged at the outwards surfaces of each cell, showed motility indicative of co-ordination between individual component cells. These results suggest that this organism could be a multicellular prokaryote.  相似文献   

13.
SERPINB11, the last of 13 human clade B serpins to be described, gave rise to seven different isoforms. One cDNA contained a premature termination codon, two contained splice variants, and four contained full-length open reading frames punctuated by eight single nucleotide polymorphisms (SNPs). The SNPs encoded amino acid variants located within the serpin scaffold but not the reactive site loop (RSL). Although the mouse orthologue, Serpinb11, could inhibit trypsin-like peptidases, SERPINB11 showed no inhibitory activity. To determine whether the human RSL targeted a different class of peptidases or the serpin scaffold was unable to support inhibitory activity, we synthesized chimeric human and mouse proteins, in which the RSLs had been swapped. The human RSL served as a trypsin inhibitor when supported by mouse scaffold sequences. Conversely, the mouse RSL on the human scaffold showed no inhibitory activity. These findings suggested that variant residues in the SERPINB11 scaffold impaired serpin function. SDS-PAGE analysis supported this notion as RSL-cleaved SERPINB11 was unable to undergo the stressed-to-relaxed transition typical of inhibitory type serpins. Mutagenesis studies supported this hypothesis, since the reversion of amino acid sequences in helices D and I to those conserved in other clade B serpins partially restored the ability of SERPINB11 to form covalent complexes with trypsin. Taken together, these findings suggested that SERPINB11 SNPs encoded amino acids in the scaffold that impaired RSL mobility, and HapMap data showed that the majority of genomes in different human populations harbored these noninhibitory SERPINB11 alleles. Like several other serpin superfamily members, SERPINB11 has lost inhibitory activity and may have evolved a noninhibitory function.  相似文献   

14.
A new high-resolution structure is reported for bovine rhodopsin, the visual pigment in rod photoreceptor cells. Substantial improvement of the resolution limit to 2.2 A has been achieved by new crystallization conditions, which also reduce significantly the probability of merohedral twinning in the crystals. The new structure completely resolves the polypeptide chain and provides further details of the chromophore binding site including the configuration about the C6-C7 single bond of the 11-cis-retinal Schiff base. Based on both an earlier structure and the new improved model of the protein, a theoretical study of the chromophore geometry has been carried out using combined quantum mechanics/force field molecular dynamics. The consistency between the experimental and calculated chromophore structures is found to be significantly improved for the 2.2 A model, including the angle of the negatively twisted 6-s-cis-bond. Importantly, the new crystal structure refinement reveals significant negative pre-twist of the C11-C12 double bond and this is also supported by the theoretical calculation although the latter converges to a smaller value. Bond alternation along the unsaturated chain is significant, but weaker in the calculated structure than the one obtained from the X-ray data. Other differences between the experimental and theoretical structures in the chromophore binding site are discussed with respect to the unique spectral properties and excited state reactivity of the chromophore.  相似文献   

15.
Serpins are a class of protease inhibitors that initially fold to a metastable structure and subsequently undergo a large conformational change to a stable structure when they inhibit their target proteases. How serpins are able to achieve this remarkable conformational rearrangement is still not understood. To address the question of how the dynamic properties of the metastable form may facilitate the conformational change, hydrogen/deuterium exchange and mass spectrometry were employed to probe the conformational dynamics of the serpin human alpha(1)-antitrypsin (alpha(1)AT). It was found that the F helix, which in the crystal structure appears to physically block the conformational change, is highly dynamic in the metastable form. In particular, the C-terminal half of the F helix appears to spend a substantial fraction of time in a partially unfolded state. In contrast, beta-strands 3A and 5A, which must separate to accommodate insertion of the reactive center loop (RCL), are not conformationally flexible in the metastable state but are rigid and stable. The conformational lability required for loop insertion must therefore be triggered during the inhibition reaction. Beta-strand 1C, which anchors the distal end of the RCL and thus prevents transition to the so-called latent form, is also stable, consistent with the observation that alpha(1)AT does not spontaneously adopt the latent form. A surprising degree of flexibility is seen in beta-strand 6A, and it is speculated that this flexibility may deter the formation of edge-edge polymers.  相似文献   

16.
We have determined the crystal structure of HcRed, a far-red fluorescent protein isolated from Heteractis crispa, to 2.1A resolution. HcRed was observed to form a dimer, in contrast to the monomeric form of green fluorescent protein (GFP) or the tetrameric forms of the GFP-like proteins (eqFP611, Rtms5 and DsRed). Unlike the well-defined chromophore conformation observed in GFP and the GFP-like proteins, the HcRed chromophore was observed to be considerably mobile. Within the HcRed structure, the cyclic tripeptide chromophore, Glu(64)-Tyr(65)-Gly(66), was observed to adopt both a cis coplanar and a trans non-coplanar conformation. As a result of these two conformations, the hydroxyphenyl moiety of the chromophore makes distinct interactions within the interior of the beta-can. These data together with a quantum chemical model of the chromophore, suggest the cis coplanar conformation to be consistent with the fluorescent properties of HcRed, and the trans non-coplanar conformation to be consistent with non-fluorescent properties of hcCP, the chromoprotein parent of HcRed. Moreover, within the GFP-like family, it appears that where conformational freedom is permissible then flexibility in the chromophore conformation is possible.  相似文献   

17.
As the number of high-resolution structures of membrane proteins continues to rise, so has the necessity for techniques to link this structural information to protein function. In the case of transporters, function is achieved via coupling of conformational changes to substrate binding and release. Static structural data alone cannot convey information on these protein movements, but it can provide a high-resolution foundation on which to interpret lower resolution data obtained by complementary approaches. Here, we review selected biochemical and spectroscopic methods for assessing transporter conformational change. In addition to more traditional techniques, we present 1?F-NMR as an attractive method for characterizing conformational change in transporters of known structure. Using biosynthetic labeling, multiple, non-perturbing fluorine-labeled amino acids can be incorporated throughout a protein to serve as reporters of conformational change. Such flexibility in labeling allows characterization of movement in protein regions that may not be accessible via other methods.  相似文献   

18.
Despite a potential repertoire of >10(15) alphabeta T cell receptors (TcR), the HLA B8-restricted cytolytic T cell response to a latent antigen of Epstein-Barr virus (EBV) is strikingly limited in the TcR sequences that are selected. Even in unrelated individuals this response is dominated by a single highly restricted TcR clonotype that selects identical combinations of hypervariable Valpha, Vbeta, D, J, and N region genes. We have determined the 1.5 A crystal structure of this "public" TcR, revealing that five of the six hypervariable loops adopt novel conformations providing a unique combining site that contains a deep pocket predicted to overlay the HLA B8-peptide complex. The findings suggest a structural basis for the immunodominance of this clonotype in the immune response to EBV.  相似文献   

19.
We have investigated the conformational basis of the expansion transformation that occurs upon maturation of the bacteriophage T4 prohead, by using laser Raman spectroscopy to determine the secondary structure of the major capsid protein in both the precursor and the mature states of the surface lattice. This transformation involves major changes in the physical, chemical, and immunological properties of the capsid and is preceded in vivo by processing of its major protein, gp23 (56 kDa), to gp23* (49 kDa), by proteolysis of its N-terminal gp23-delta domain. The respective secondary structures of gp23 in the unexpanded state, and of gp23* in the expanded state, were determined from the laser Raman spectra of polyheads, tubular polymorphic variants of the capsid. Similar measurements were also made on uncleaved polyheads that had been expanded in vitro and, for reference, on thermally denatured polyheads. We find that, with or without cleavage of gp23, expansion is accompanied by substantial changes in secondary structure, involving a major reduction in alpha-helix content and an increase in beta-sheet. The beta-sheet contents of gp23* or gp23 in the expanded state of the surface lattice, and even of gp23 in the unexpanded state, are sufficient for a domain with the "jellyroll" fold of antiparallel beta-sheets, previously detected in the capsid proteins of other icosahedral viruses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Serpins fold into a native metastable state and utilize a complex conformational change to inhibit target proteases. An undesirable result of this conformational flexibility is that most inhibitory serpins are heat sensitive, forming inactive polymers at elevated temperatures. However, the prokaryote serpin, thermopin, from Thermobifida fusca is able to function in a heated environment. We have determined the 1.8 A x-ray crystal structure of thermopin in the native, inhibitory conformation. A structural comparison with the previously determined 1.5 A structure of cleaved thermopin provides detailed insight into the complex mechanism of conformational change in serpins. Flexibility in the shutter region and electrostatic interactions at the top of the A beta-sheet (the breach) involving the C-terminal tail, a unique structural feature of thermopin, are postulated to be important for controlling inhibitory activity and triggering conformational change, respectively, in the native state. Here we have discussed the structural basis of how this serpin reconciles the thermodynamic instability necessary for function with the stability required to withstand elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号