首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors affecting microspore embryogenesis of cow cockle (Saponaria vaccaria) were evaluated including donor plant growing conditions, genotype, bud size, density, medium composition, and culture conditions. Of the two donor plant (day/night) temperature regimes evaluated (10/5°C and 20/15°C), plants grown at 20/15°C were the most embryogenic. An embryogenic frequency of greater than 350 embryos/100 buds was observed in the most embryogenic genotype, cv. ‘White Beauty’. Buds from 3–9 mm in length were evaluated for their embryogenic potential; buds that were 4–7.9 mm produced the most embryos/100 buds. Of all the media compositions evaluated, NLN medium with 15% sucrose resulted in the most embryos. Cow cockle microspores required an initial period of 32°C for 3 days for production of microspore-derived embryos (MDEs).  相似文献   

2.
Summary The influence of donor plant growth environment, microspore development stage, culture media and incubation conditions on microspore embryogenesis was studied in three Indian B. juncea varieties. The donor plants were grown under varying environments: field conditions, controlled conditions, or a combination of the two. The correlation analysis between the bud size and microspore development stage revealed that the bud size is an accurate marker for donor plants grown under controlled conditions, however, the same does not hold true for the field-grown plants. The buds containing late uninucleate microspores collected from plants grown under normal field conditions up to bolting stage and then transferred to controlled environment were observed to be most responsive with genotypic variability ranging from 10 to 35 embryos per Petri dish, irrespective of the other factors. NLN medium containing 13% sucrose was found to be most suitable for induction of embryogenesis The fortification of this medium with activated charcoal, polyvinylpyrrolidone, colchicine, or growth regulators (6-benzylaminopurine and 1-naphthaleneacetic acid) was observed to be antagonistic for microspore embryogenesis, while silver nitrate (10 μM) had a significant synergistic effect. A post-culture high-temperature incubation of microspores at 32.5±1°C for 10–15 d was found most suitable for high-frequency production of microspore embryos. The highest frequency of microspore embryogenesis (78 embryos per Petri dish) was observed from the late uninucleate microspores (contained in bud sizes 3.1–3.5 nm irrespective of genotype) cultured on NLN medium containing 13% sucrose and silver nitrate (10 μM), and incubated at 32.5°C for 10–15 d.  相似文献   

3.
The production of doubled haploid (DH) plants from microspores is an important technique used in plant breeding programs and basic research. Although doubled haploidy efficiencies in wheat and barley are sufficient for breeding purposes, oat (Avena sativa L.) is considered recalcitrant. The objective of this project was to develop a protocol for the production of microspore-derived embryos of oat and further develop these embryos into fertile DH plants. A number of experiments were conducted evaluating the factors influencing microspore embryogenesis, i.e. donor plant conditions, pretreatments, media composition, and culture conditions. The initial studies yielded little response, and it was not until high microspore densities (106 microspores/mL and greater) were used that embryogenesis was achieved. Depending on the treatment, yields of over 5,000 embryos/106 microspores were obtained for breeding line 2000QiON43. The doubled haploidy protocol includes: a 0.3 M mannitol pretreatment of the tillers for 7 days, culture in W14 basal medium with a pH of 6.5–7.5, a microspore density of 106 microspores/mL, and continuous incubation at 28 °C incubation. The resulting embryos observed after 28 days were plated onto solidified W14 medium with 0.8 or 1.0 g/L activated charcoal. A colchicine treatment of 0.2 % colchicine for 4 h resulted in conversion of 80 % of the plants from haploid to DH. This protocol was successful for the production of oat microspore-derived embryos and DH green plants with minimal albinism. DH seed was produced and planted for evaluation in a field nursery.  相似文献   

4.
 To establish an efficient asparagus microspore culture system, experiments were conducted to investigate the effects of medium components, period of cold pretreatment for flower buds, and period of anther co-culture on culture response. All factors affected the frequency of asparagus microspore division and the yields of microspore-derived calli. The best results were obtained by pretreating genotype G459 flower buds at 4  °C for 7–9 days, co-culturing anthers with shed microspores for 14 days, and including 6% sucrose, 2 mg l–1α-naphthaleneacetic acid and 1 mg l–1 N6-benzylaminopurine in the culture medium. After 4 days of culture, most shed microspores contained starch-like bodies and died. The 2% of shed microspores lacking these structures divided to produce microcalli. For the best treatments in the different experiments, about 140 calli per 100 anthers were recovered. Cultured on four different regeneration media, 19.6–21% and 3.9–8.0% of microspore-derived calli produced shoots and embryos, respectively, and ultimately plantlets, among which 49% were haploid, 34% diploid, 4% triploid and 11% tetraploid. Received: 3 September 1998 / Revision received: 25 November 1998 / Accepted: 5 December 1998  相似文献   

5.
Summary Wheat (Triticum aestivum L.) haploids and doubled haploids have been used in breeding programs and genetic studies. Wheat haploids and doubled haploids via anther culture are usually produced by a multiple step culture procedure. We improved a wheat haploid and doubled haploid production system via anther culture in which plants are produced from microspore-derived embryos using one medium and one culture environment. In the improved protocol, tillers of donor plants were pretreated at 4°C for 1–2 wk before anthers were plated on a modified 85D12 basal medium with phenylacetic acid (PAA) and zeatin and cultured at 30°C with a 12-h daylength (43 μEs−1m−2) in an incubator. Microspore-derived embryos developed in 2–3 wk and the plants were produced 3–4 wk after anther plating. In the improved system, as much as 53% of the anthers of Pavon 76 were responsive with multiple embryos. For plant regeneration, as many as 22 green and 25 albino plants were produced from 100 anthers. Sixty-five green plants were grown to maturity and 32 (49%) plants were fertile and produced seeds (indicating spontaneous chromosome doubling) while 33 plants did not produce seed. Of five Nebraska breeding lines tested using the protocol, NE96675 was very responsive and the other lines less so, indicating that the protocol is genotype-dependent.  相似文献   

6.
Genetic manipulation of microspores and microspore-derived embryos   总被引:4,自引:0,他引:4  
Summary Recent advances in plant cell and molecular biology have furthered the genetic manipulation of many plant species and advanced the options for crop improvement. Among the many targets for genetic manipulation, microspores offer several unique advantages: they are haploid, single-celled, and highly synchronized. In many plant species microspores develop into haploid embryos, and eventually haploid and doubled haploid plants, after in vitro anther or microspore culture. This induced in vitro developmental pathway of microspores, termed microspore embryogenesis, can be used to recover individual homozygous plants from microspores and microspore-derived embryos after genetic manipulation such as mutagenesis and gene transfer. The highly efficient microspore embryogenesis system inBrassica napus has been used successfully to obtain various mutants after microspore mutagenesis, and to achieve gene transfer mediated byAgrobacterium tumefaciens. Presented in the Session-in-Depth In Vitro Gametophyte Biology at the 1991 World Congress on Cell and Tissue Culture held in Anaheim, California, June 16–20, 1991.  相似文献   

7.
Plant regeneration was obtained from cultured anthers and hypocotyl segments of caraway (Carum carvi L.). Microspore- and somatic tissue-derived embryos were compared by observation of the regeneration process under identical induction conditions. Fluorescent microscopy with DAPI staining showed initiation of cell divisions and formation of embryogenic callus and somatic embryos from anther sacs, with production of embryos of both microspore and somatic origin. Induction of somatic embryos from hypocotyl-derived callus was also demonstrated. Isozyme native polyacrylamide gel electrophoresis was used to identify haploids and doubled haploids, and to determine the frequency of spontaneous diploidization of regenerated plants of microspore origin. Donor plants (2n = 20) and their anther-derived derivative plants (n = 10, 2n = 20, 4n = 40) in callus stage or leafy rosette stage were compared. The esterase (EST) band patterns of regenerated plants differed from the heterozygous parental material, suggesting that the regenerated plants were microspore-derived haploid/doubled haploid plants. The similar profile of EST bands between the diploid anther-derived plants and a sample of the donor plants corresponded to a somatic regeneration pathway. Although the selected induction conditions revealed no preference for induction of microspore embryogenesis, the anther culture protocol established for caraway utilizing isozyme segregating EST loci markers is suitable for DH production.  相似文献   

8.
Various systems of anther and microspore cultures were studied to establish an efficient doubled haploid production method for Indonesian hot pepper (Capsicum annuum L.). A shed-microspore culture protocol was developed which outperformed all the previously reported methods of haploid production in pepper. The critical factors of the protocol are: selection of flower buds with more than 50% late unicellular microspores, a 1 day 4°C pretreatment of the buds, followed by culture of the anthers in double-layer medium system for 1 week at 9°C and thereafter at 28°C in continuous darkness. The medium contained Nitsch components and 2% maltose, with 1% activated charcoal in the solid under layer and 2.5 μM zeatin and 5 μM indole-3-acetic acid in the liquid upper layer. All the ten genotypes of hot pepper tested, responded to this protocol. The best genotypes produced four to seven plants per original flower bud. This protocol can be used as a potential tool for producing doubled haploid plants for hot pepper breeding.  相似文献   

9.
Haploid induction in rocket (Eruca sativa Mill.), a novel and increasingly important vegetable, was studied in microspore culture. A procedure based on a high sucrose NLN medium and heat shock treatment resulted in nuclear divisions and embryo induction. The effect of genotype both among seed lots and among single plants was a major factor influencing embryo formation. The addition of activated charcoal was essential for obtaining reproducible results, 0.2 mg l−1 being superior to 1.0 mg l−1. A 24 h heat shock treatment at 32°C doubled the embryogenic response compared to a 48 h treatment. Embryo conversion was only efficient (23%) for embryos that had been cultured on medium with activated charcoal and subcultured on solid B5 medium; pretreatment of embryos with ABA or desiccation for 1–3 weeks inhibited embryo conversion. Analysis of ploidy level revealed that the majority (65.6%) of 489 regenerated plantlets tested were diploid. Breeding programs and genetic studies of rocket are likely to benefit substantially from the established method.  相似文献   

10.
Microspore culture is a very important and useful tool in plant breeding for haploid production and has been developed for many years.Brassica campestris (Brassica rapa L. ssp.oleifera) is an important oilseed crop, but it is relatively recalcitrant in tissue culture including microspore culture. The microspore culture in our laboratory is based on the Canadian protocol. Thirty genotypes ofB. campestris were included in this study; twenty produced embryos. The highest yield was 5930 embryos per 100 buds from Canadian genotype Cv-2, this result was one of the best that had been reported in microspore culture inB. campestris. The buds measuring 2.0 mm to 3.9 mm in length responded best to produce embryos, the optimum timing for microspore culture was confirmed to be during the mid-late to very-late uninucleate stage. The buds could be removed from either the main raceme or lateral racemes. Activated charcoal (150 mg l-1) was added to the liquid NLN medium, it promoted embryogenesis significantly; embryo development was faster and the embryo yield was significantly higher than those cultures without activated charcoal. The donor plant condition was considered an important factor influencing embryogenesis; older donor plants (older than five weeks) and a cold treatment are recommended.  相似文献   

11.
Camelina [Camelina sativa (L.) Crantz], a member of the Brassicaceae family, has a unique oil profile that has potential both for biofuels and as a food crop. It is essential to have a doubled haploidy protocol in order to enhance breeding of this crop for prairie conditions as well as improve the yield and quality characteristics. Microspore-derived embryos have been produced from Camelina sativa. Buds 1–3 mm in length were selected for culture. The microspores were isolated and purified in full-strength B5 extraction medium and cultured in NLN medium with 12.5% sucrose and 12.5% polyethylene glycol 4000 (PEG) without glutamine, at a density of 10,000 microspores per mL. Glutamine was added to the cultures 72 h after extraction to give a final concentration of 0.8 g/L. The microspore cultures were maintained at 24°C in the dark. After 28 days embryos were observed and these were regenerated to plants and selfed seed was produced. The highest embryogenic frequency achieved was 38 microspore-derived embryos from 100,000 microspores.  相似文献   

12.
 An isolated microspore culture and green plant regeneration method for rye (Secale cereale L.) was established. Rye isolated microspore androgenesis was genotype-dependent. PG-96M medium supplemented with 6% maltose gave the highest microspore survival rate after 48 h of culture and the highest embryo/callus yield (930 embryos/calli per 100 anthers from cv. Florida 401). Osmotic pressure in the induction medium played an important role. Pretreatment of the anthers with mannitol was beneficial for the microspore culture. Embryos/calli of a relatively younger age and smaller size had a higher regeneration ability, with the best green plant regeneration rate being 6%. Over 150 microspore-derived green plants have been obtained so far. About 90% of the regenerated plants were spontaneous doubled haploids. This is the first report of isolated microspore culture in true rye resulting in androgenic embryogenesis and plant regeneration. Received: 26 April 1999 / Accepted: 23 November 1999  相似文献   

13.
Summary Culture of Brassica campestris anthers at 35°C for one or three days prior to culture at 25°C significantly stimulated the yield of microspore-derived embryos. More than 100 plants were regenerated from cultured embryos and haploids were identified amongst them. The haploid frequency was greater than 70% if all small-flowered sterile plants were considered to be haploid. The yield of microspore-derived plants in B. campestris is approaching the level where anther culture may be utilized as a practical breeding tool.  相似文献   

14.
High frequency androgenesis from isolated microspores of maize   总被引:1,自引:0,他引:1  
Anthers from a highly androgenic genotype of maize (139/39-02), when cultured in a modified, liquid YP medium, dehisced within 2–7 days resulting in a stationary suspension of microspores. After 12–15 days, the microspore suspension was found to contain multicellular masses which went on to produce macroscopic embryo-like structures within 20–25 days of culture initiation. Embryogenic callus could be obtained by transferring microspore-derived embryos onto a modified N6 medium supplemented with 2.5 mg/l dicamba and 0.1 mg/l 2,4-D. Subculture onto hormone-free medium resulted in plant regeneration. Over 400 embryo-like structures per 100 anthers cultured have been obtained from liquid induction medium as compared to 55 embryos per 100 anthers cultured on an agar-solidified medium. Approximately 5–25% of these embryo-like structures went on to produce callus from which plants could be recovered. Mechanical isolation of microspores from anthers precultured for 0, 3, and 7 days also resulted in embryo production and plant regeneration. This represents the first report of plant recovery from isolated maize microspores. The use of a liquid induction medium applied to a highly androgenic genotype allows for the production of large numbers of microspore-derived plants and provides a single, haploid cell regeneration system for maize.  相似文献   

15.
 Barley microspore-derived doubled-haploid embryos have been produced in vitro. The development of embryo desiccation technology will allow long-term storage, germplasm preservation and low delivery cost. Treatment of the microspore-derived embryos was essential to induce desiccation tolerance and to arrest further development and plant regeneration. At the concentrations used, a treatment with trehalose was more efficient than with sucrose, and mannitol was harmful to the embryos. Up to 80% of the desiccated embryos produced complete green plants when transferred to regeneration medium, by the application of a 0.6 m trehalose or a 10–5 m abscisic acid treatment to the embryos in the culture induction medium. The morphology of these plants was similar to plants produced directly from non-desiccated embryos. Received: 28 September 1998 / Revision received: 27 November 1998 / Accepted: 5 January 1999  相似文献   

16.
Isolated microspore culture techniques are being widely used in Brassica breeding programs to generate haploid and doubled haploid plants. A number of factors influence regeneration response in vitro including genotype. In order to assess the effect of genotype on microspore embryogenesis in B. rapa L. var. oleifera, 17 cultivars and breeding lines were evaluated. Embryos developed from all but one genotype when using NLN medium with 17% sucrose, followed by a reduction in sucrose concentration to 10%, 48 h later. The number of embryos /100 buds differed between genotypes, ranging from 0 to 70. Further studies indicated that sucrose concentration and incubation time influenced embryogenesis. Selection studies carried out with an Agriculture and Agri-Food Canada breeding line have resulted in the identification of a highly embryogenic B. rapa line. This line produced thousands of microspore-derived embryos /100 buds and will be useful in mutant selection and gene transfer as well as biochemical and developmental studies.  相似文献   

17.
The efficiency of production of doubled haploid plants in canola (Brassica napus L.) breeding programmes is reduced when large numbers of haploid and infertile plants survive until flowering. We used flow cytometry to determine ploidy status and predict subsequent fertility of microspore-derived plantlets from three canola genotypes, with or without colchicine treatment of microspore suspensions. Young leaf tissue was sampled from microspore-derived plantlets within 1 week of transfer to soil, and processed immediately by flow cytometry. The process was repeated on the same plants 3–5 weeks later. Of the 519 plants transferred to soil, 57.2% were consistently haploid at both sample times, 33.5% were consistently diploid at both sample times, and the remainder (9.2%) were uncertain or inconsistent in ploidy status across sampling times. Of the 518 plants that survived to flowering, 32.4% were diploid at both times of sampling and fertile (set seed) and 46.3% were haploid at both sampling times and infertile. Another 10.8% were haploid at both sampling times and fertile, but had low pollen viability and seed set, and some were triploid or of uncertain ploidy level. Colchicine treatment of microspore suspensions significantly increased the proportion of diploid plants from 9.7 to 69.7%, with significant variation among genotypes. Evidence from simple sequence repeat marker loci indicated that diploid and fertile plants from the control treatment (no colchicine) were derived from spontaneously doubled haploid gametes, rather than unreduced gametes or somatic tissue. Flow cytometry at the first sample time was very efficient in detecting diploid plants of which 94.2% were subsequently fertile.  相似文献   

18.
A method for micropropagation ofDalbergia sissoo has been developed. Single node segments obtained from coppice shoots of a mature tree (20 – 25 year old) produced 3–4 shoots per explant on Murashige and Skoog (MS) medium containing 4.4 x 10−6 M benzylaminopurine (BAP) and 4.4 × 10−7 M of Β-naphthoxy acetic acid (NOA) (shoot multiplication medium) within 4 weeks. Thein vitro regenerated shoots were 3 – 4 cm in length and provided 2 to 3 culturable nodal segments which on shoot multiplication medium again produced 3–4 shoots. Following this procedure 18–24 shoots were produced from single nodal segment within 60 d. 80 % of the shoots directly produced five roots when they were firstly treated with MS medium supplemented with 10−5 M indole-3-butyric acid (IBA) and subsequently transferred to half strength liquid MS medium containing 1 % activated charcoal followed by half strength liquid MS free hormones, vitamins and activated charcoal. Thein vitro raised plants were hardened for survival after transplantation to soil by exposing them to various humidity conditions, gradually from higher to low, with nearly 100 % transplant success. Acknowledgement: Authors are grateful to CSIR and DST, New Delhi for financial assistance.  相似文献   

19.
Brassica nigra is generally regarded as a recalcitrant species for microspore culture among Brassica crops. Conditions for reliable induction of microspore embryogenesis of B. nigra were studied in this context. Flower bud length and microspore developmental stage were correlated with further embryogenesis. The optimal bud size range was 2.0–2.5 mm for the highest proportion of totipotent, late uninucleate microspore and the highest frequency of microspore embryogenesis. Treatment of a short heat shock by incubating the microspore culture at 32°C for 24 h was suitable for the microspore survival, sustained cell divisions, and further induced embryogenesis. Subsequently, the use of NLN medium with the addition of 13% sucrose and 0.1% activated charcoal (AC) provided the optimal conditions for the development of microspore-derived embryos (MDEs). The early cotyledonary (EC) stage embryos cultured on MS medium fortified with 4.6 μM zeatin (ZT) and 0.12 μM indole-3-acetic acid (IAA) resulted in the most efficient rates of plantlet regeneration. The ploidy levels of regenerated plants of B. nigra were determined by flow cytometry, revealing that 50.6% were diploid. The results enable the advancement of breeding programs and genetic studies in B. nigra.  相似文献   

20.
Haploid technology is used to develop uniform, true-breeding lines, as well as to accelerate crop improvement programs. Among 20 Apiaceae species screened for response to doubled haploidy, 11 generated microspore-derived embryos, and all but one of the latter yielded doubled haploid plants. Donor plant conditions, basal media, and culture conditions were evaluated for their efficacy on inducing microspore-derived embryos. Growing donor plants at temperature conditions of 10/5 or 15/10°C promoted microspore embryogenesis in fennel (Foeniculum vulgare Mill.), whereas, growing donor plants at a temperature regime of 10/5°C, along with the use of a cold extraction method, enhanced embryogenesis in dill (Anethum graveolens L.) and anise (Pimpinella anisum L.). The culture of fennel and dill microspores in an NLN basal medium and caraway (Carum carvi L.) in AT-3 basal medium promoted the highest frequencies of embryo induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号