首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of retinoid metabolism in the developing chick limb bud   总被引:8,自引:0,他引:8  
Retinoids (vitamin A derivatives) have been shown to have striking effects on developing and regenerating vertebrate limbs. In the developing chick limb, retinoic acid is a candidate morphogen that may coordinate the pattern of cellular differentiation along the anteroposterior limb axis. We describe a series of investigations of the metabolic pathway of retinoids in the chick limb bud system. To study retinoid metabolism in the bud, all-trans-[3H]retinol, all-trans-[3H]retinal and all-trans-[3H]retinoic acid were released into the posterior region of the limb anlage, the area that contains the zone of polarizing activity, a tissue possibly involved in limb pattern formation. We found that the locally applied [3H]retinol is primarily converted to [3H]retinal, [3H]retinoic acid and a yet unidentified metabolite. When [3H]retinal is locally applied, it is either oxidized to [3H]retinoic acid or reduced to [3H]retinol. In contrast, local delivery of retinoic acid to the bud yields neither retinal nor retinol nor the unknown metabolite. This flow of metabolites agrees with the biochemical pathway of retinoids that has previously been elucidated in a number of other animal systems. To find out whether metabolism takes place directly in the treated limb bud, we have compared the amount of [3H]retinoid present in each of the four limb anlagen following local treatment of the right wing bud. The data suggest that retinoid metabolism takes place mostly in the treated limb bud. This local metabolism could provide a simple mechanism to generate in a controlled fashion the biologically active all-trans-retinoic acid from its abundant biosynthetic precursor retinol. In addition, local metabolism supports the hypothesis that retinoids are local chemical mediators involved in pattern formation.  相似文献   

2.
Specific assays, based on gas chromatography-mass spectrometry and high-performance liquid chromatography, were used to quantify the conversion of retinol and retinal into retinoic acid by the pig kidney cell line LLC-PK1. Retinoic acid synthesis was linear for 2-4 h as well as with graded amounts of either substrate to at least 50 microM. Retinoic acid concentrations increased through 6-8 h, but decreased thereafter because of substrate depletion (t1/2 of retinol = 13 h) and product metabolism (1/2 = 2.3 h). Retinoic acid metabolism was accelerated by treating cells with 100 nM retinoic acid for 10 h (t1/2 = 1.7 h) and was inhibited by the antimycotic imidazole ketoconazole. Feedback inhibition was not indicated since retinoic acid up to 100 nM did not inhibit its own synthesis. Retinol dehydrogenation was rate-limiting. The reduction and dehydrogenation of retinal were 4-8-fold and 30-60-fold faster, respectively. Greater than 95% of retinol was converted into metabolites other than retinoic acid, whereas the major metabolite of retinal was retinoic acid. The synthetic retinoid 13-cis-N-ethylretinamide inhibited retinoic acid synthesis, but 4-hydroxylphenylretinamide did not. 4'-(9-Acridinylamino)methanesulfon-m-anisidide, an inhibitor of aldehyde oxidase, and ethanol did not inhibit retinoic acid synthesis. 4-Methylpyrazole was a weak inhibitor: disulfiram was a potent inhibitor. These data indicate that retinol dehydrogenase is a sulfhydryl group-dependent enzyme, distinct from ethanol dehydrogenase. Homogenates of LLC-PK1 cells converted retinol into retinoic acid and retinyl palmitate and hydrolyzed retinyl palmitate. This report suggests that substrate availability, relative to enzyme activity/amount, is a primary determinant of the rate of retinoic acid synthesis, identifies inhibitors of retinoic acid synthesis, and places retinoic acid synthesis into perspective with several other known pathways of retinoid metabolism.  相似文献   

3.
Functional activity of polymorphonuclear neutrophils (PMN) is associated with the metabolism of Arachidonic Acid (AA) released from membrane phospholipids. In this study the in vitro effect of dipyrone, a non steroidal anti-inflammatory drug, on the production of AA metabolites through cyclooxygenase (CO) and lipoxygenase (LO) pathways by stimulated PMN has been investigated. PMN isolated by counterflow centrifuge elutriator were greater than 98% pure and viable. Metabolite production was evaluated by RIA of Thromboxane A2 (TxA2), Prostaglandin E2 (PGE2), Leukotriene B2 (LTB4) and Leukotriene C4 (LTC4) after PMN stimulation with calcium ionophore A 23187 (20 microM). The levels of beta-thromboglobulin (RIA) lower than 5 ng/ml allowed us to rule out activation of residual contaminant platelets. In these experimental conditions, in the absence of dipyrone the products (ng/10(6) cells) of AA metabolism were LTB4 (3.51 +/- 0.22), LTC4 (0.81 +/- 0.08), TxB2 (0.144 +/- 0.025) and PGE2 (0.150 +/- 0.017). Incubation with dipyrone induced changes of PGE2 and TXB2 production in a dose dependent fashion (r = 0.83 and r = 0.87, p less than 0.001), obtaining already at the lowest drug concentration (5 micrograms/ml) a significant inhibition (33 and 40% for TxB2 and PGE2 p less than 0.005). No significant changes of LTB4 and LTC4 production have been observed. The results of this study indicate that dipyrone relevantly affects CO metabolite synthesis by stimulated PMN at concentrations comparable to those reached in therapeutic use. The inhibition of PGE2 synthesis which is present in inflamed tissues and actively participates in inflammatory reactions, could contribute to the therapeutic anti-inflammatory action of dipyrone.  相似文献   

4.
Rat liver microsomes converted retinol into retinal and retinoic acid. The production of retinal was observed over a range of substrate concentrations (10-100 microM), but retinoic acid was detected only at retinol concentrations of 50 microM or higher. At 50 microM retinol, the rate of microsomal retinal production was 2-fold greater than that of cytosol, but the rate of retinoic acid synthesis was 4-fold less than that of cytosol. Retinal was also converted into retinoic acid by rat liver microsomes, but at a rate 2-5% of that catalyzed by cytosol. Microsomes also interfered with the conversion of retinol and retinal into retinoic acid by rat liver cytosol. A 50% decrease in the cytosolic rates of retinoic acid production from retinol or retinal was caused by microsomal to cytosolic protein ratios of 0.1 and 0.5, respectively. Under the incubation conditions, which included NAD in the medium, addition of microsomes to cytosol did not affect the elimination half-life of retinol or retinoic acid, but did decrease the elimination half-life of retinal by 2-fold. These data show that retinal synthesis from retinol does not necessarily reflect retinoic acid synthesis and suggest that liver microsomes sequester free retinol and convert it into retinal primarily for elimination, rather than to serve as substrate for cytosolic retinoic acid synthesis.  相似文献   

5.
We have previously reported on the dependency of activated B lymphocytes for retinol. Here we confirm and extend these findings that cells deprived of retinol perish in cell culture within days, displaying neither signs of apoptosis nor of cell cycle arrest. Cell death can be prevented by physiological concentrations of retinol and retinal, but not by retinoic acid or three synthetic retinoic acid analogues. To exclude the possibility that retinoic acid is so rapidly degraded as to escape detection, we have tested its stability in intra- and extracellular compartments. Contrary to expectation, we find that retinoic acid persists for longer (t 1/2 3 d) in cultures than retinol (t 1/2 1 d). Furthermore, despite the use of sensitive trace-labeling techniques, we cannot detect retinoic acid or 3,4-didehydroretinoic acid among retinol metabolites. However, retinol is converted into several new retinoids, one of which has the ability to sustain B cell growth in the absence of an external source of retinol, supporting the notion of a second retinol pathway. We have also determined which of the known retinoid-binding proteins are expressed in B lymphoblastoid cells. According to results obtained with polymerase chain reaction-assisted mRNA detection, they transcribe the genes for cellular retinol- and cellular retinoic acid-binding proteins, for the nuclear retinoic acid receptors, RAR-alpha, -gamma, and RXR-alpha, but not RAR-beta. Our findings that B cells do not synthesize retinoic acid or respond to exogenous retinoic acid on the one hand, but on the other hand convert retinol to a novel bioactive form of retinol, suggest the existence of a second retinoid pathway, distinct from that of retinoic acids.  相似文献   

6.
Adult rat Leydig cells, purified by Percoll density gradient centrifugation, were used to determine the effect of retinol and retinoic acid on steroidogenesis. It was found that both retinoic acid and retinol stimulated testosterone production. Although retinol was less potent than retinoic acid, retinol had the greater efficacy. When these retinoids were tested in the presence of a maximal dose of LH, it was found that retinol inhibited LH-stimulated testosterone synthesis whereas retinoic acid had no similar effect. These results demonstrate for the first time that retinol and retinoic acid have a direct effect on Leydig cell steroidogenesis in culture suggesting that retinoids play a role in the maintenance and regulation of Leydig cell function.  相似文献   

7.
Cellular retinoic acid binding protein (CRABP) has been expressed efficiently in Escherichia coli from the cDNA of bovine adrenal CRABP and characterized, especially with respect to affinity for endogenous retinoids and a role for it in retinoic acid metabolism. The purified E. coli-expressed CRABP was similar to authentic mammalian CRABP in molecular weight (approximately 14,700), isoelectric point (4.76), absorbance maxima (apo-CRABP, 280 nm; holo-CRABP, 350 and 280 nm with the ratio A350/A280 = 1.8), and in fluorescence excitation (350 nm) and emission spectra (475 nm). The equilibrium dissociation constant, Kd, of E. coli-derived CRABP and all-trans-retinoic acid was 10 +/- 1 nM (mean +/- S.D., n = 4) by retinoid fluorescence and 7 +/- 1 nM (mean +/- S.D., n = 3) by quenching of protein fluorescence, but neither retinol nor retinal bound in concentrations as high as 7 microM. All-trans-cyclohexyl ring derivatives of retinoic acid (3,4-didehydro-, 4-hydroxy-, 4-oxo-, 16-hydroxy-4-oxo-, 18-hydroxy-) had affinities similar to that of all-trans-retinoic acid, whereas 13-cis-retinoic acid and 4-oxo-13-cis-retinoic acid had approximately 25-fold lower affinity. Holo-CRABP was a substrate for retinoic acid catabolism in rat testes microsomes by three criteria: 1) the rate of retinoic acid metabolism with CRABP in excess of retinoic acid exceeded the rate supported by the free retinoic acid; 2) increasing the apo-CRABP did not decrease the rate as predicted if free retinoic acid were the only substrate; and 3) holo-CRABP had a lower Michaelis constant (1.8 nM) for retinoic acid elimination than did free retinoic acid (49 nM). These data indicate a direct role for CRABP in retinoic acid metabolism and suggest a mechanism for discriminating metabolically between all-trans- and 13-cis-retinoids.  相似文献   

8.
The biosynthesis of retinoic acid from retinol by rat tissues in vitro   总被引:3,自引:0,他引:3  
This report shows that a spectrum of vitamin A-dependent tissues can produce retinoic acid by synthesis in situ, indicates that cellular retinol and retinoic acid binding proteins are not obligatory to retinoic acid synthesis, and provides initial characterization of retinoic acid synthesis by rat tissues. Retinoic acid synthesis from retinol was detected in homogenates of rat testes, liver, lung, kidney, and small intestinal mucosa, but not spleen. Zinc did not stimulate the conversion of retinol into retinoic acid by liver homogenates. Retinoic acid synthesis was localized in cytosol of liver and kidney, where its rate of synthesis from retinol was fourfold (liver) and sevenfold (kidney) slower than from retinal. The synthesis of retinoic acid from retinol required NAD and was not supported by NADP. NADH (0.5 mM) reduced retinoic acid synthesis from retinol, supported by NAD (2 mM), by 50-70%, but was fivefold less potent in reducing retinoic acid synthesis from retinal. Dithiothreitol enhanced the conversion of retinol, but not retinal, into retinoic acid. EDTA inhibited the conversion of retinol into retinoic acid slightly (13%, liver; 29%, kidney). A high ethanol concentration (100 mM), relative to retinoid substrate (10 microM), inhibited retinoic acid synthesis from retinol (liver, 54%; kidney, 30%) and from retinal (30%, liver; 9%, kidney). 4'-(9-Acridinylamino)methansulfon-m-anisidine, an inhibitor of aldehyde oxidase, and disulfiram, a sulfhydryl-group crosslinking agent, were potent inhibitors of retinoic acid synthesis at 10 microM or less, and seemed equipotent in liver and kidney. 4-Methylpyrazole, an inhibitor of ethanol metabolism, also inhibited retinoic acid synthesis from retinol, but was less potent than the former two inhibitors, and affected liver to a greater extent than kidney, particularly with retinal as substrate.  相似文献   

9.
The main retinoids and some binding proteins and enzymes involved in retinol metabolism have been quantified in different types of rat liver cells. Hepatic perisinusoidal stellate cells contained 28-34 nmol of retinoids/10(6) cells, and parenchymal liver cells contained 0.5-0.8 nmol of retinoids/10(6) cells, suggesting that as much as 80% of more of total liver retinoids might be stored in stellate cells with the rest stored in parenchymal cells. Isolated endothelial cells and Kupffer cells contained very low levels of retinoids. More than 98% of the retinoids recovered in stellate cells were retinyl esters. Isolated parenchymal and stellate cell preparations both contained considerable retinyl palmitate hydrolase and acyl-CoA:retinol acyltransferase activities. Parenchymal cells accounted for about 75-80% of the total hepatic content of these two enzyme activities, with the rest located in stellate cells. On a cell protein basis, the concentrations of both of these activities were much greater in stellate cells than in parenchymal cells. In contrast, cholesteryl oleate and triolein hydrolase activities were fairly evenly distributed in all types of liver cells. Large amounts of cellular retinol binding proteins were also found in parenchymal and stellate cells. Although parenchymal cells accounted for more than 90% of hepatic cellular retinol binding protein, the concentration of the protein in stellate cells (per unit protein) was 22 X greater than that in parenchymal cells. Stellate cells were also enriched in cellular retinoic acid binding protein. Thus, both parenchymal and stellate cells contain substantial amounts of retinoids and of the enzymes and intracellular binding proteins involved in retinol metabolism. Stellate cells are particularly enriched in these several components.  相似文献   

10.
Retinoyl beta-glucuronide and retinyl beta-glucuronide, which are naturally occurring water-soluble metabolites of vitamin A, induce the granulocytic differentiation of HL-60 cells in vitro, as evidenced by an increased reduction of nitroblue tetrazolium. The relative effectiveness of various retinoids in differentiation is retinoic acid greater than retinoyl beta-glucuronide greater than retinyl beta-glucuronide. Under the selected assay conditions, retinol, hydroxyphenyl-retinamide, retinamide, and N-retinoyl-phenylalanine are essentially inactive in differentiation. At concentrations of retinoids from 10(-9) to 10(-5) M, cell viability was best with the retinoid beta-glucuronides and retinamide, less with retinoic acid and retinol, and poorest with the N-retinoyl aromatic amines. Cellular growth was depressed only slightly by retinyl beta-glucuronide and retinamide, but to a greater degree by the other derivatives. Retinoyl beta-glucuronide was hydrolyzed in part to retinoic acid, whereas retinyl beta-glucuronide was cleaved to retinol, if at all, at a very slow rate. Under the selected assay conditions, retinoic acid and the retinoid beta-glucuronides primarily induce the differentiation of HL-60 cells, whereas the N-retinoyl aromatic amines show cytotoxicity.  相似文献   

11.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

12.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

13.
Since adhesion of neutrophils (PMN) to endothelial cells may influence PMN activation responses, we examined whether adhesion of PMN to TNF alpha-activated human umbilical vein endothelial cells (HUVEC) stimulates leukotriene B4 (LTB4) production. Endothelial adhesivity towards PMN increased after HUVEC pretreatment with TNF alpha for 4 h. LTB4 production increased markedly in response to stimulation with arachidonic acid (20 microM) when PMN were added to the hyperadhesive HUVEC. In contrast, stimulation of PMN in suspension did not potentiate LTB4 production. LTB4 production persisted when PMN were applied to TNF alpha-pretreated HUVEC fixed with 1% paraformaldehyde excluding the possibility that metabolic activity of endothelium participates in this response. PMN adhesion to plastic and gelatin also enhanced LTB4 indicating that adhesion was a critical event in inducing LTB4 production. We used monoclonal antibodies (mAb) to adhesion molecules on endothelial cells (i.e., endothelial leukocyte adhesion molecule-1 (ELAM-1) and intercellular adhesion molecule-1 (ICAM-1)) or on PMN (CD18) to assess the role of PMN adhesion to the activated endothelium on LTB4 potentiation. Both anti-ELAM-1 mAb and anti-ICAM-1 mAb inhibited PMN adhesion (by 55 and 41%, respectively) as well as LTB4 production (by 65 and 50%, respectively). Anti-CD18 mAb also reduced the adhesion (65%) and the LTB4 production (66%). Furthermore, combination of anti-ELAM-1 mAb (H18/7) and anti-ICAM-1 mAb (RR1/1) or of anti-ELAM-1 mAb (H18/7) and anti-CD18 mAb (IB4) had an additive effect in inhibiting both PMN adhesion as well as LTB4 production. PMN adherence to immobilized recombinant soluble rELAM-1 or rICAM-1 also increased LTB4 production, which was prevented with relevant mAbs. However, neither rELAM-1 nor rICAM-1 stimulated LTB4 production of PMN in suspension. We conclude that PMN adhesion to TNF alpha-stimulated endothelial cells enhances LTB4 production by PMN, a response activated by binding of PMN to expressed endothelial cell surface adhesion molecules.  相似文献   

14.
15.
In the present paper we demonstrate that retinol-retinol-binding protein and chylomicron remnant retinyl esters in concentrations normally found in human plasma inhibit growth of normal human B lymphocytes. Physiological concentrations of retinoic acid (about 30 nM) were less active than physiological concentrations of retinol (about 3 microM). Pharmacological concentrations of retinol and retinoic acid were more active than the concentrations normally found in plasma. Retinol (3 microM) inhibited anti-IgM-mediated DNA synthesis as measured by [3H]thymidine uptake at 72 h by 78%. Furthermore, we found that the cells were blocked in the mid-G1 phase of the cell cycle. Thus, neither MYC up-regulation measured at 3 h nor the expression of the early activation antigen 4F2 was reduced by retinol, whereas the late activation markers (transferrin receptor expression and actinomycin D staining at 48 h of stimulation) were markedly inhibited. Retinol reduced the interleukin 6 production induced by anti-IgM and interleukin 4 after 48 h, whereas the induction of interleukin 6 and tumor necrosis factor by O-tetradecanoylphorbol-13-acetate and ionomycin was less affected. We also noted that the retinoids reduced the formation of plaque-forming cells (i.e. Ig synthesis). These data imply that vitamin A present in human plasma is a normal modulator of B cell function.  相似文献   

16.
Vitamin A and its analogs (retinoids) regulate adipocyte differentiation. Recent investigations have demonstrated a relationship among retinoids, retinoid-binding-protein 4 (RBP4) synthesized in adipose tissues, and insulin-resistance status. In this study, we measured retinoid levels and analyzed the expression of retinoid homeostatic genes associated with retinol uptake, esterification, oxidation, and catabolism in subcutaneous (Sc) and visceral (Vis) mouse fat tissues. Both Sc and Vis depots were found to contain similar levels of all-trans retinol. A metabolite of retinol with characteristic ultraviolet absorption maxima for 9-cis retinol was observed in these 2 adipose depots, and its level was 2-fold higher in Sc than in Vis tissues. Vis adipose tissue expressed significantly higher levels of RBP4, CRBP1 (intracellular retinol-binding protein 1), RDH10 (retinol dehydrogenase), as well as CYP26A1 and B1 (retinoic acid (RA) hydroxylases). No differences in STRA6 (RBP4 receptor), LRAT (retinol esterification), CRABP1 and 2 (intracellular RA-binding proteins), and RALDH1 (retinal dehydrogenase) mRNA expressions were discerned in both fat depots. RALDH1 was identified as the only RALDH expressed in both Sc and Vis adipose tissues. These results indicate that Vis is more actively involved in retinoid metabolism than Sc adipose tissue.  相似文献   

17.
18.
Three newly synthesized benzoic acid derivatives (terephthalic acid anilides, chalcone carboxylic acid, and azobenzene carboxylic acid), with a certain structural similarity to retinoic acid, were examined for their retinoid-like bioactivity and their capacity to bind to cellular retinoid binding proteins. Two in vitro systems were used to evaluate their retinoid-like bioactivity: inhibition of adipose conversion of ST 13 murine preadipose cells and growth promotion of murine sarcoma virus (MSV)-transformed 3T3 cells in serum-free culture. All three compounds tested inhibited ST 13 adipose conversion at nanomolar concentrations in a manner similar to classical retinoids such as retinoic acid. The growth-stimulating activity of these compounds on MSV-transformed 3T3 cells was one to two orders of magnitude greater than that of retinoic acid. Simultaneous treatment with these compounds and retinoic acid produced only a barely detectable additive effect, suggesting a common mechanism of action, whereas unrelated mitogens, thrombin, and insulin worked synergistically in combination with retinoic acid. None of the compounds competed with retinol for binding to cellular retinol binding protein. However, two of the three competed with retinoic acid for binding to cellular retinoic acid binding protein. This study provides evidence that the newly synthesized compounds should be included among the retinoids and that their strong biological activity will undoubtedly contribute to the biological and medical application of retinoids.  相似文献   

19.
Inositol trisphosphate (InsP3) production and cytosolic free Ca2+ ([Ca2+]i) elevations induced by leukotriene B4 (LTB4)-receptor activation were studied in the human promyelocytic-leukaemia cell line HL60, induced to differentiate by retinoic acid. The myeloid-differentiated HL60 cells respond to LTB4 by raising their [Ca2+]i with a dose-response relationship similar to that shown by normal human neutrophils. The observations of the LTB4 transduction mechanism were compared with those of the transduction mechanism of the chemotactic peptide fMet-Leu-Phe in HL60 cells differentiated with dimethyl sulphoxide. Both LTB4 and fMet-Leu-Phe triggered a rapid (less than 5 s) elevation of [Ca2+]i, which occurred in parallel with the InsP3 production from myo-[3H]inositol-labelled cells. The threshold concentrations of the agonists, for InsP3 production, were found at 10(-9) M, a slightly higher concentration than that required to detect [Ca2+]i elevations. No significant changes were noted in the phosphoinositide levels upon stimulation with LTB4. Exposure to Bordetella pertussis toxin before LTB4 stimulation abolished both the increased formation of InsP3 and the rise of [Ca2+]i. LTB4 and fMet-Leu-Phe elicited elevations of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] with no detectable lag time, followed by slower and more sustained inositol 1,3,4-trisphosphate elevations. Stimulation with various leukotriene analogues revealed a good correlation between both total InsP3 as well as Ins(1,4,5)P3 formation and elevations of [Ca2+]1. Thus LTB4 receptor activation results in an increased production of Ins(1,4,5)P3 via a transduction mechanism also involving a nucleotide regulatory protein, as previously described for the fMet-Leu-Phe transduction mechanism.  相似文献   

20.
While some authors suggest that retinoids are potential anti-proliferative and antioxidant agents, evidence has suggested those present pro-oxidant properties, which might lead to malignant proliferation. These discordances stimulated one to investigate the proliferative/anti-proliferative properties of two major retinoids, retinol (ROH) and retinoic acid (RA). In Sertoli cells, ROH increased proliferation while RA was anti-proliferative. ROH increased DNA synthesis, decreased p21 levels and induced cell cycle progression. ROH increased reactive species (RS) production and stimulated p38, JNK1/2 and ERK1/2 MAPKs activation. Antioxidant treatment with Trolox blocked ROH-induced RS production, MAPKs activation and proliferation; MAPKs inhibition blocked proliferation. The potential sites of RS indicate that ROH-induced RS is promoted via mitochondria and xanthine oxidase. In contrast, RA induced neither RS production nor MAPKs activation. RA decreased DNA synthesis and increased p21 leading to cell arrest. Overall, data show that ROH, but not RA, is able to induce proliferation through non-classical and redox-dependent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号