首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following the action of glucosidase I to clip the terminal alpha1,2-linked glucose, glucosidase II sequentially cleaves the two inner alpha1,3-linked glucose residues from the Glcalpha1,2Glcalpha1,3Glcalpha1,3Man(9)GlcNAc(2) oligosaccharide of the incipient glycoprotein as it undergoes folding and maturation. Glucosidase II belongs to family 31 glycosidases. These enzymes act by the acid-base catalytic mechanism. The cDNA of the wild-type and several mutant forms of the fusion protein of the enzyme in which mutations were introduced in the conserved motif D(564)MNE(567) were expressed in Sf9 cells, and the proteins were purified on Ni-NTA matrix. The catalytic activity of the purified proteins was determined with radioactive Glc(2)Man(9)GlcNAc(2) substrate. The results show that the aspartate and glutamate within the D(564)MNE(567) motif can serve for catalysis, most likely as the acid-base pair within the active site of the enzyme. The developmental regulation of glucosidase II was studied during the ontogeny of the mouse mammary gland for its growth and differentiation. The mRNA of both alpha and beta subunits of the enzyme, immunoreactive alpha and beta subunits, and enzyme activity were measured over the complete developmental cycle. The changes in all the parameters were consistent with similar fluctuations with several other enzymes of the N-glycosylation machinery reported earlier, reaching a three- to fourfold increase over the basal level in the virgin gland at the peak of lactation. Altogether it appears that there is a coordinated regulation of the enzymes involved in protein N-glycosylation during the development of the mouse mammary gland.  相似文献   

2.
Glucosidase I, the enzyme catalyzing the first step of N-linked oligosaccharide processing, has been purified from calf liver crude membranes [H. Hettkamp, G. Legler, and E. Bause, (1984) Eur. J. Biochem. 142, 85-90]. Binding experiments with concanavalin A-Sepharose suggest that glucosidase I is a glycoprotein with high-mannose carbohydrate chain(s). The enzyme has a subunit molecular mass of approximately 83 kDa and specifically hydrolyzes the terminal alpha-1,2-linked glucose residue from the natural Glc3-Man9-GlcNAc2 oligosaccharide. Studies with a variety of substrates modified in the aglycon moiety suggest that the Glc2 branch rather than the more distant domains of the substrate molecule are important for binding and hydrolysis. Glucosidase I does not require metal ions for activity and is strongly inhibited by 1-deoxynojirimycin (dNM) and its N-alkyl derivatives. Ki values range from 0.07 microM for N-methyl-dNM to 1.0 microM for dNM, measured at the pH-optimum of enzyme activity. The pH dependence of inhibition indicates that the cationic form of the inhibitors is the active species. Comparison of the Ki for N-decanoyl-dNM (approximately 70 microM) with that of N-decyl-dNM (approximately 0.4 microM) suggests that electrostatic interactions at the catalytic site of the enzyme are important for inhibitor binding. 1-Deoxymannojirimycin, previously assumed to be a specific mannosidase inhibitor, as well as its N-methyl and N-5-carboxypentyl derivatives, inhibit glucosidase I with Ki values around 190, 17, and 100 microM, respectively. This apparent lack of specificity shows that in vivo experiments on N-glycoprotein processing as well as the interpretation of results with these mannosidase inhibitors may give misleading results when these compounds are used in the millimolar range.  相似文献   

3.
As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 μM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 μM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.  相似文献   

4.
The 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) of rat brain cytosol has been purified to apparent homogeneity. The purification procedure involves six successive steps, includes one affinity chromatography, and yields enzyme which displays a 1,550-fold enhancement in specific activity. The homogeneous enzyme has a Km of 8.0 microM for 5 alpha-dihydrotestosterone, a Vmax of 1.3 mumol of 3 alpha-androstanediol formed per h/mg of protein, and displays a preference for NADPH. It appears to be the major activity responsible for the reduction of 5 alpha-dihydrotestosterone in this tissue and may play a pivotal role in brain androgen metabolism. The homogeneous enzyme has several properties in common with the 3 alpha-hydroxysteroid dehydrogenase purified from rat liver cytosol (Penning, T. M., Mukharji, I., Barrows, S., and Talalay, P. (1984) Biochem. J. 222, 601-611). It is a monomer with a molecular weight of 31,000, it has a pI of 5.5, and it is potently inhibited by the nonsteroidal anti-inflammatory drugs (IC50 value for indomethacin = 2.0 microM). The potency of inhibition observed for the brain enzyme parallels that observed for cyclooxygenase: indomethacin greater than fenamates greater than l-methylpyrrole acetic acids greater than arylpropionic acids greater than salicylates greater than acetaminophen. Examination of a variety of steroidal contraceptives as modulators of the dehydrogenase indicates that ethinylestradiol is a very poor inhibitor (IC50 = 100 microM), while 6-medroxyprogesterone acetate (Provera) is an extremely potent inhibitor (IC50 = 0.2 microM). The possibility exists that brain androgen metabolism may be altered by the nonsteroidal anti-inflammatory drugs and synthetic progestins.  相似文献   

5.
An α-carbonic anhydrase (CA, EC 4.2.1.1) was purified and characterized kinetically from erythrocytes of the sturgeon Acipenser gueldenstaedti, an endangered species. The sturgeon enzyme (AgCA) showed kinetic parameters for the CO(2) hydration reaction comparable with those of the human erythrocytes enzyme hCA II, being a highly active enzyme, whereas its esterase activity with 4-nitrophenyl acetate as substrate was lower. Sulphonamide inhibitors (acetazolamide, sulphanilamide) strongly inhibited AgCA, whereas metal ions (Ag(+), Zn(2+), Cu(2+) and Co(2+)) were weak, millimolar inhibitors. Several widely used pesticides (2,4-dichlorophenol, dithiocarbamates, parathion and carbaryl) were also assayed as inhibitors of this enzyme. The dithiocarbamates were low micromolar AgCA inhibitors (IC(50) of 16-18 μM), whereas the other pesticides inhibited the enzyme with IC(50)s in the range of 102-398 μM. The wide use of dithiocarbamate pesticides may be one of the factors enhancing the vulnerability of this sturgeon species to pollutants.  相似文献   

6.
Trimming glucosidase I and II have been solubilized from crude calf liver microsomes and partially enriched by a fractionated extraction procedure applying different concentrations of nonionic detergent and salt. The pH optimum of both enzymes was found to be close to 6.2, which discriminates them from hydrolases of lysosomal origin acting on p-nitrophenyl glycosides with the highest rate at more acidic pH. Glucosidase I and II and the nonspecific alpha-glucosidase(s) were inhibited by 1-deoxynojirimycin with median inhibitory concentration of 3 microM, 20 microM, 12 microM, respectively. Discrimination between these enzymes was strongly enhanced by N-alkylation of 1-deoxynojirimycin and formed the basis for the design of the affinity ligand. Glucosidase I has been purified to homogeneity by affinity chromatography on AH-Sepharose 4B with N-carboxypentyl-1-deoxynojirimycin as ligand. Sodium dodecyl sulfate gel electrophoresis of the purified enzyme revealed a subunit molecular mass of about 85 kDa. The molecular mass of the native enzyme, determined by gel chromatography, was approximately equal to 320-350 kDa, pointing to the association of subunits to a tetramer. Glucosidase I is rather stable when stored at 4 degrees C in the presence of detergent (t 1/2 approximately equal to 20 days) and showed high specificity for the hydrolysis of the terminal (alpha 1,2)-linked glucose residue in the natural substrate Glc3-Man9-(GlcNAc)2.  相似文献   

7.
Here the tyrosinase inhibition studies of library of 2,5-disubstituted-1,3,4-oxadiazoles have been reported and their structure-activity relationship (SAR) also have been discussed. The library of the oxadiazoles was synthesized under the microwave irradiation and was structures of these were characterized by different spectral techniques. From this study it could be concluded that for a better inhibition of tyrosinase, electronegative substitution is essential as most probably the active site of the enzyme contain some hydrophobic site and position is also very important for the inhibition purposes due to the conformational space. The electronegativity of the compounds is somewhat proportional to the inhibitory activity. The compound 3e (3'-[5-(4'-bromophenyl)-1,3,4-oxadiazol-2-yl]pyridine) exhibited most potent (IC50 = 2.18 microM) inhibition against the enzyme tyrosinase which is more potent than the standard potent inhibitor L-mimosine (IC50 = 3.68 microM). This molecule can be the best candidate as a lead compound for further development of drug for the treatments of several skin disorders.  相似文献   

8.
The enzyme glutamine:fructose 6-phosphate amidotransferase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16, GFAT) catalyzes the formation of glucosamine 6-phosphate from fructose 6-phosphate and glutamine. In view of the important role of GFAT in the hexosamine biosynthetic pathway, we have purified the enzyme from rat liver and characterized its physicochemical properties in comparison to those from the published microbial enzymes. The purified enzyme has a molecular mass of about 75 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. On a Sephacryl S-200 gel filtration column, the purified enzyme eluted in a single peak corresponding to a molecular mass of about 280 kDa, indicating that the active enzyme may be composed of four subunits. The N-terminal amino acid sequence of the purified enzyme was determined as X-G-I-F-A-Y-L-N-Y-H-X-P-R, where X indicates an unidentified residue. The K(M) values of the purified enzyme for fructose 6-phosphate and glutamine were 0.4 and 0.8 mM, respectively. The purified enzyme was inactivated by 4, 4'-dithiodipyridine, and the activity of the inactivated enzyme was restored by dithiothreitol. The inactivation followed pseudo first-order and saturation kinetics with the K(inact) of 5.0 microM. Kinetic studies also indicated that 4,4'-dithiodipyridine is a competitive inhibitor of the enzyme with respect to glutamine. Isolation and analysis of the cysteine-modified peptide indicated that Cys-1 was the modified site. Cys-1 has been suggested to play an important role in enzymatic activity of the Escherichia coli enzyme (M. N. Isupov, G. Obmolova, S. Butterworth, M. Badet-Denisot, B. Badet, I. Polikarpov, J. A. Littlechild, and A. Teplyakov, 1996, Structure 4, 801-810).  相似文献   

9.
Bradykinin and 22 of its analogs were evaluated for their abilities to inhibit the hydrolysis of [3H]hippurylglycylglycine by purified porcine kidney angiotensin I converting enzyme. The mean inhibitory concentration (IC50) for bradykinin was 1.2 +/- 0.2 X 10(-6) M. Except for Ile-Ser-bradykinin and [Sar4]-bradykinin, none of the kinin analogs were more potent in this regard than bradykinin. Bacitracin, gamma-aminobutyric acid, epsilon-aminocaproic acid, and structurally related compounds were also tested. The IC50 value for bacitracin was 1.9 +/- 0.4 X 10(-4) M, gamma-aminobutyric acid, 83.4 +/- 7.2 mM, and for epsilon-aminocaproic acid, 7.0 +/- 1.4 mM. Compounds were also evaluated for their abilities to prevent 125I-labelled [Tyr1]-kallidin binding to angiotensin I converting enzyme inhibited by EDTA. The IC50 values for bradykinin, bacitracin, gamma-aminobutyric acid, and epsilon-aminocaproic acid were 1.6 +/- 0.3 X 10(-8) M, 2.6 +/- 0.9 X 10(-6) M, greater than 291 mM, and 13.2 +/- 3.9 mM, respectively.  相似文献   

10.
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is a thiamin diphosphate- (ThDP)- and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids (BCAAs) leucine, isoleucine, and valine. The gene from Haemophilus influenzae that encodes the AHAS catalytic subunit was cloned, overexpressed in Escherichia coli BL21(DE3), and purified to homogeneity. The purified H. influenzae AHAS catalytic subunit (Hin-AHAS) appeared as a single band on SDS-PAGE gel, with a molecular mass of approximately 63 kDa. The enzyme catalyzes the condensation of two molecules of pyruvate to form acetolactate, with a K(m) of 9.2mM and the specific activity of 1.5 micromol/min/mg. The cofactor activation constant (K(c)=13.5 microM) and the dissociation constant (K(d)=3.3 microM) of ThDP were also determined by enzymatic assay and tryptophan fluorescence quenching studies, respectively. We screened a chemical library to discover new inhibitors of the Hin AHAS catalytic subunit. Through which, AVS-2087 (IC(50)=0.53 microM), KSW30191 (IC(50)=1.42 microM), and KHG20612 (IC(50)=4.91 microM) displayed potent inhibition as compare to sulfometuron methyl (IC(50)=276.31 microM).  相似文献   

11.
Zhou X  Wang Y  Or PM  Wan DC  Kwan YW  Yeung JH 《Phytomedicine》2012,19(7):648-657
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.  相似文献   

12.
A type of novel 4,6-substituted-(diaphenylamino)quinazolines, which designed based on the 4-(phenylamino)quinazoline moiety, have been discovered as potential EGFR inhibitors. These compounds displayed good antiproliferative activity and EGFR-TK inhibitory activity. Especially, 4-((4-(3-bromophenylamino)quinazolin-6-ylamino)methyl)phenol (5b), showed the most potent inhibitory activity (IC(50)=0.28μM for Hep G2, IC(50)=0.59μM for A16-F10 and IC(50)=0.87μM for EGFR) and effectively induces apoptosis in a dose-dependent manner in the Hep G2 cell line. Molecular docking of 5b into EGFR TK active site was also performed. This inhibitor nicely fitting the active site might well explain its excellent inhibitory activity.  相似文献   

13.
A search has been initiated for lead inhibitors of the nonstructural protein 3 (NS3)-associated NTPase/helicase activities of hepatitis C virus, the related West Nile virus, Japanese encephalitis virus and the human mitochondrial Suv3 enzyme. Random screening of a broad range of unrelated low-molecular mass compounds, employing both RNA and DNA substrates, revealed that 4,5,6,7-tetrabromobenzotriazole (TBBT) hitherto known as a potent highly selective inhibitor of protein kinase 2, is a good inhibitor of the helicase, but not NTPase, activity of hepatitis C virus NTPase/helicase. The IC50 is approximately 20 micro m with a DNA substrate, but only 60 micro m with an RNA substrate. Several related analogues of TBBT were enzyme- and/or substrate-specific inhibitors. For example, 5,6-dichloro-1-(beta-d-ribofuranosyl)benzotriazole (DRBT) was a good, and selective, inhibitor of the West Nile virus enzyme with an RNA substrate (IC50 approximately 0.3 micro m), but much weaker with a DNA substrate (IC50 approximately 3 micro m). Preincubation of the enzymes, but not substrates, with DRBT enhanced inhibitory potency, e.g. the IC50 vs the hepatitis C virus helicase activity was reduced from 1.5 to 0.1 micro m. No effect of preincubation was noted with TBBT, suggesting a different mode of interaction with the enzyme. The tetrachloro congener of TBBT, 4,5,6,7,-tetrachlorobenzotriazole (TCBT; a much weaker inhibitor of casein kinase 2) is also a much weaker inhibitor than TBBT of all four helicases. Kinetic studies, supplemented by comparison of ATP-binding sites, indicated that, unlike the case with casein kinase 2, the mode of action of the inhibitors vs the helicases is not by interaction with the catalytic ATP-binding site, but rather by occupation of an allosteric nucleoside/nucleotide binding site. The halogeno benzimidazoles and benzotriazoles included in this study are excellent lead compounds for the development of more potent inhibitors of hepatitis C virus and other viral NTPase/helicases.  相似文献   

14.
The in vitro effects of the injectable form of analgesic drugs, dexketoprofen trometamol, dexamethasone sodium phosphate, metamizole sodium, diclofenac sodium, thiocolchicoside, on the activity of purified human carbonic anhydrase I and II were evaluated. The effect of these drugs on erythrocyte hCA I and hCA II was compared to recombinant hCA I and hCA II expressed in Ecoli. IC(50) values of the drugs that caused inhibition were determined by means of activity percentage diagrams. The IC(50) concentrations of dexketoprofen trometamol and dexamethasone sodium phosphate on hCA I were 683 μM and 4250 μM and for hCA II 950 μM and 6200 μM respectively. Conversely, the enzyme activity was increased by diflofenac sodium. In addition, thiocolchicoside has not any affect on hCA I and hCA II. The effect of these drugs on erythrocyte hCA I and hCA II were consistent with the inhibition of recombinant enzymes.  相似文献   

15.
This paper describes the design, synthesis and pharmacological evaluation of new N-acylhydrazone (NAH) compounds, belonging to the N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone class (2a-p). Classical heteroaromatic ring bioisosterism strategies were applied to the previously reported N-phenylpyrazolyl-4-acylhydrazone derivative 1, elected as lead-compound due to its important anti-aggregating profile on arachidonic acid induced platelet aggregation (IC(50)=24+/-0.5 micro M), from which emerge this new series 2. These new compounds 2a-p were readily synthesized, characterized and tested on platelet aggregation assays induced by collagen (5 micro g/mL), ADP (5 micro M) and arachidonic acid (100 micro M) in rabbit citrated platelet-rich plasma. Compounds 2b, 2d, and 2h were found to be the most potent, exhibiting a significant antiplatelet activity on arachidonic acid- and collagen-induced platelet aggregation. In addition, these new antiplatelet agents are free of gastric ulcerogenic effect and presented discrete anti-inflammatory and analgesic properties. The N-para-chlorophenyltriazolyl-4-acylhydrazone compound 2h produced the highest inhibitory effect on collagen (IC(50)=21.6+/-0.4 micro M) and arachidonic acid-induced platelet aggregation (IC(50)=2.2+/-0.06 micro M), suggesting that the nature of the substituent on the phenyl ring of the N-heteroaromatic system of NAH moiety may be an important structural requirement for the improvement of antiplatelet activity, in comparison with lead-series 1.  相似文献   

16.
A non-kallikrein arginine esterase (esterase I) has been purified from dog urine and characterized. The enzyme was purified by a three-step procedure, including ion exchange chromatography on DEAE-Sephacel, affinity chromatography on p-aminobenzamidine-Sepharose, and final gel filtration on Ultrogel AcA-54. The purified preparation gave three protein bands on polyacrylamide gel electrophoresis, all of which had esterolytic activity. The enzyme has a specific activity of 601 esterase units/mg protein. It has negligible kininogenase activity. Esterase I gave two closely migrating protein bands on reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular weights of 34,000 and 33,300. Esterase I is a glycoprotein with a pH optimum of 9.5 and a pI of 4.62. The enzyme is strongly inhibited by a host of inhibitors including aprotinin, leupeptin, antipain, soybean trypsin inhibitor, lima bean trypsin inhibitor, and DPhe-Phe-Arg-chloromethyl ketone (I50 in the 10(-9)-10(-8) M range). However, p-aminobenzamidine, N alpha-p-tosyl-lysyl chloromethyl ketone and phenylmethylsulfonyl fluoride were weak inhibitors, with I50 values in the 10(-5)-10(-7) M range. The enzyme preferentially hydrolyzes Pro-Arg bonds. Among fluorogenic substrates used in this study, butyloxycarbonyl-Val-Pro-Arg-methylcoumarinamide (alpha-thrombin substrate) was found to be the best, with a Km of 1.7 microM and a kcat/Km of 6.3 s.microM-1. However, esterase I does not convert fibrinogen to fibrin nor activate plasminogen to plasmin. Esterase I is immunologically distinct from dog urinary kallikrein, having no cross-reactivity with antibodies against dog kallikrein.  相似文献   

17.
The Arabidopsis thaliana type 1 protein phosphatase (PP1) catalytic subunit was released from its endogenous regulatory subunits by ethanol precipitation and purified by anion exchange and microcystin affinity chromatography. The enzyme was identified by MALDI-TOF mass spectrometry from a tryptic digest of the purified protein as a mixture of PP1 isoforms (TOPP 1-6) indicating that at least 4-6 of the eight known PP1 proteins are expressed in sufficient quantities for purification from A. thaliana suspension cells. The enzyme had a final specific activity of 8950 mU/mg using glycogen phosphorylase a as substrate, had a subunit molecular mass of 35 kDa as determined by SDS-PAGE and behaved as a monomeric protein of approx. 39 kDa on Superose 12 gel filtration chromatography. Similar to the mammalian type 1 protein phosphatases, the A. thaliana enzyme was potently inhibited by Inhibitor-2 (IC(50)=0.65 nM), tautomycin (IC(50)=0.06 nM), microcystin-LR (IC(50)=0.01 nM), nodularin (IC(50)=0.035 nM), calyculin A (IC(50)=0.09 nM), okadaic acid (IC(50)=20 nM) and cantharidin (IC(50)=60 nM). The enzyme was also inhibited by fostriecin (IC(50)=22 microM), NaF (IC(50)=2.1 mM), Pi (IC(50)=9.5 mM), and PPi (IC(50)=0.07 mM). Purification of the free catalytic subunit allowed it to be used to probe protein phosphatase holoenzyme complexes that were enriched on Q-Sepharose and a microcystin-Sepharose affinity matrix and confirmed several proteins to be PP1 targeting subunits.  相似文献   

18.
Chemical modification of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-phosphonomethylglycine), with pyridoxal 5'-phosphate suggested that Lys-22 (equivalent to Lys-23 of the Petunia hybrida enzyme) is a potential active site residue (Huynh, Q. K., Kishore, G. M., and Bild, G. S. (1988) J. Biol. Chem. 263, 735-739). To investigate the possible role of this residue in the reaction mechanism, we have used site-directed mutagenesis to replace Lys-23 of the P. hybrida enzyme with 3 other amino acid residues: Ala, Glu, and Arg. Analysis of these mutant enzymes indicates that of these only the Lys-23 to Arg mutant enzyme is active; the other two replacements (Ala and Glu) result in inactivation of the enzyme. Two of the mutant enzymes (Lys-23 to Arg and Ala) were purified to homogeneity and characterized. The purified Lys-23 to Arg mutant enzyme is less sensitive than the wild type enzyme to pyridoxal 5'-phosphate. It showed identical Km values for substrates and a 5-fold higher I50 value for glyphosate in comparison with those from the wild type enzyme. Binding studies using fluorescence measurements revealed that the substrate shikimate 3-phosphate and glyphosate were able to bind the purified Lys-23 to Arg mutant enzyme but not to the purified catalytically inactive Lys-23 to Ala mutant enzyme. The above results suggest that the cationic group at position 23 of the enzyme may play an important role in substrate binding.  相似文献   

19.
The binding of the competitive antagonist alpha-bungarotoxin (alpha-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the alpha-subunit of the Torpedo acetylcholine receptor has been characterized. 125I-alpha-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by alpha-Btx (IC50 = 5.0 x 10(-8) M), d-tubocurarine (IC50 = 5.9 X 10(-5)M), and NaCl (IC50 = 7.9 x 10(-2)M). In the presence of 0.02% sodium dodecyl sulfate, 125I-alpha-Btx bound to the 56-residue peptide with a KD of 3.5 nM, as determined by equilibrium saturation binding studies. Because alpha-Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, [3H]PCP was bound to the 172-227 peptide. [3H]PCP binding was inhibited by chlorpromazine (IC50 = 6.3 x 10(-5)M), tetracaine (IC50 = 4.2 x 10(-6)M), and dibucaine (IC50 = 2.7 x 10(-4)M). Equilibrium saturation binding studies in the presence of 0.02% sodium dodecyl sulfate showed that [3H]PCP bound at two sites, a major site of high affinity with an apparent KD of 0.4 microM and a minor low-affinity site with an apparent KD of 4.6 microM. High -affinity binding occurred at a single site on peptide 205-227 (KD = 0.27 microM) and was competed by chlorpromazine but not by alpha-Btx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Tissue distribution and subcellular localization of mammalian myosin I   总被引:11,自引:0,他引:11       下载免费PDF全文
Myosin I, a nonfilamentous single-headed actin-activated ATPase, has recently been purified from mammalian tissue (Barylko, B., M. C. Wagner, O. Reizes, and J. P. Albanesi. 1992. Proc. Natl. Acad. Sci. USA. 89:490-494). To investigate the distribution of this enzyme in cells and tissues mAbs were generated against myosin I purified from bovine adrenal gland. Eight antibodies were characterized, five of them (M4-M8) recognize epitope(s) on the catalytic "head" portion of myosin I while the other three (M1-M3) react with the "tail" domain. Immunoblot analysis using antiadrenal myosin I antibody M2 demonstrates the widespread distribution of the enzyme in mammalian tissues. Myosin I was immunolocalized in several cell types including bovine kidney (MDBK), rat kidney (NRK), rat brain, rat phaeochromocytoma (PC12), fibroblast (Swiss 3T3), and CHO cells. In all cases, myosin I was concentrated at the cell periphery. The most intense labeling was observed in regions of the cell usually associated with motile activity (i.e., filopodia, lamellipodia and growth cones). These results are consistent with earlier observations on protozoan myosin I that suggest a motile role for the enzyme at the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号