首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemical and physical properties of a biosurfactant synthesized by hexadecane-grown Rhodococcus species H13-A are described. The biosurfactant is an anionic glycolipid consisting of 1 major and 10 minor components. The hydrophilic portion of the molecule is trehalose, which is acylated with normal C(10) to C(22) saturated and unsaturated fatty acids, C(35) to C(40) mycolic acids, hexanedioic and dodecanedioic acids, and 10-methyl hexadecanoic and 10-methyl octadecanoic acids. The major glycolipid species was identified as 2,3,4,6,2',3',4',6'-octaacyltrehalose, plus minor glycolipid species of di-, tetra- and hexa-acyltrehalose derivatives. The glycolipid exhibited a critical micelle concentration of 1.5?mg/mL and minimum interfacial tension value of 2?×?10(-2)?mN/m against decane, with a further reduction in interfacial tension to 6?×?10(-5)?mN/m in the presence of the cosurfactant pentanol. The phase behavior of the glycolipid indicates the formation of a surfactant-rich, "middle-phase" microemulsion containing liquid crystals, both of which are associated with surfactant systems having ultralow interfacial tension values. Key words: trehalose lipids, glycolipids, biosurfactants.  相似文献   

2.
Rhodococcus strains from the culture collection at the Institute of Ecology and Genetics of Microorganisms, Perm, Russia were examined for biosurfactant production during growth on n-alkanes and the ability to remove oil associated with contaminated sands and oil shale cuttings. Members of the genus, particularly R. ruber, were shown to produce low toxicity surfactants effective in removing oil from surfaces. The extent of desorption was inversely related to the concentration of high molecular weight hydrocarbons, namely asphaltenes and resins. In addition, crude surfactant complexes enhanced the degradation of crude oil, in the short term, when added to contaminated agricultural soil during bioremediation studies utilizing biopiling technology.  相似文献   

3.
Chalcones are important compounds in food and cosmetics industry, and in food chemistry research. We have developed a method of synthesis of dihydrochalcones from flavanone and α,β-unsaturated chalcones by microbial hydrogenation. It has been found that bacterial strains of Rhodococcus sp. and Gordonia sp. can be successfully used in the key step of dihydrochalcones synthesis. This kind of activity has not been previously examined.Twelve microorganisms were initially screened for their ability to catalyze biotransformation reactions of selected flavonoid compounds. Of these, Rhodococcus sp. and Gordonia sp. transformed flavanone and chalcones to hydrogenation products in good isolated yield of 13–94%.  相似文献   

4.
Microorganisms, that degrade hydrocarbon were isolated and screened for their biosurfactant activity. A total of 68 strains were isolated and tested for their glycolipid activity of which 4 isolates showed good glycolipid activity. Isolate K10 gave the maximum biosurfactant production in medium A (containing kerosene as a sole carbon source) as compared to medium B (containing glucose as a sole carbon source). Characterization of isolate K10 showed that it belongs to Pseudomonas species.  相似文献   

5.
Abstract

The demand to repair areas contaminated with hydrocarbon products has led to the development of new technologies for the treatment of contaminants in an unconventional method, that is, no physical or chemical methods are used. Biosurfactants are amphiphilic biomolecules produced by microorganisms that can be used in environments contaminated by petroleum products due to their unexceptionable tensile properties. Petroleum degrading strain Rhodococcus erythropolis HX-2 was found to be an effective producer of biosurfactants. The resulting biosurfactant (named NK) exhibits high physicochemical properties in terms of surface activity. It is capable of reducing surface tension from 54.99 to 28.89?mN/m and critical micelle concentration (CMC) is 100?mg/L. NK was found to be a substitute for chemically synthesized surfactants because of its higher solubilization efficiency for petroleum and polycyclic aromatic hydrocarbons, superior to SDS, Tween 80, Triton X-100 and Rhamnolipid (a wide used biosurfactant). In addition, it exhibits favorable emulsion stability over a wide range of pH (3–10), temperature (20–100?°C) and salinity ranges (5–20?g/L). It was found that the addition of biosurfactant can improve the efficiency of petroleum degradation, therefore it has potential applications in bioremediation.
  • Highlights
  • Rhodococcus erythropolis HX-2 is an effective petroleum degrading strain.

  • HX-2 is a potential source of biosurfactant production.

  • The biosurfactant NK reduces surface tension and exhibits high emulsification activity.

  • The biosurfactant NK is effective over a wide range of temperatures, pH and salinity.

  • The biosurfactant NK shows high solubilization efficiency for petroleum as well as polycyclic aromatic hydrocarbons.

  相似文献   

6.
7.
Metabolism of anthracene by a Rhodococcus species   总被引:2,自引:0,他引:2  
A Rhodococcus sp. isolated from contaminated river sediment was investigated to determine if the isolate could degrade high molecular mass polycyclic aromatic hydrocarbons. The Rhodococcus sp. was able to utilize anthracene (53%), phenanthrene (31%), pyrene (13%), and fluoranthene (5%) as sole source of carbon and energy, but not naphthalene or chrysene. In a study of the degradation of anthracene by a Rhodococcus sp., the identification of ring-fission products indicated at least two ring-cleavage pathways. One results in the production of 6,7-benzocoumarin, previously shown to be produced chemically from the product of meta cleavage of 1,2-dihydroxyanthracene, a pathway which has been well established in Gram-negative bacteria. The second is an ortho cleavage of 1,2-dihydroxyanthracene that produces 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, a dicarboxylic acid ring-fission product. This represents a novel metabolic pathway only identified in Gram-positive bacteria.  相似文献   

8.
The study of the interaction of biosurfactants with biological membranes is of great interest in order to gain insight into the molecular mechanisms of their biological actions. In this work we report on the interaction of a bacterial trehalose lipid produced by Rhodococcus sp. with phosphatidylcholine membranes. Differential scanning calorimetry measurements show a good miscibility of the glycolipid in the gel state and immiscibility in the fluid state, suggesting domain formation. These domains have been visualized and characterized, for the first time, by scanning force microscopy. Incorporation of trehalose lipid into phosphatidylcholine membranes produces a small shift of the antisymmetric stretching band toward higher wavenumbers, as shown by FTIR, which indicates a weak increase in fluidity. The C=O stretching band shows that incorporation of trehalose lipid increases the proportion of the dehydrated component in mixtures with the three phospholipids at temperatures below and above the gel to liquid-crystalline phase transition. This dehydration effect is also supported by data on the phospholipid P=O stretching bands. Small-angle X-ray diffraction measurements show that in the samples containing trehalose lipid the interlamellar repeat distance is larger than in those of pure phospholipids. These results are discussed within the frame of trehalose lipid domain formation, trehalose lipid/phospholipid interactions and its relevance to membrane-related biological actions.  相似文献   

9.
When prokaryotes are exposed to inhibitory concentrations of the antibiotic rifampicin, the only means hitherto identified by which cells overcome this inhibition is through mutational alteration in the target moiety, DNA-dependent RNA polymerase. In the nocardioform bacterium Rhodococcus erythropolis a novel mechanism has been identified, consisting of an inducible rifampicin-inactivating mechanism. Changes in the drug absorbance spectrum paralleled the decline in bacteriostatic activity of the antibiotic.  相似文献   

10.
Trehalose lipids are an important group of glycolipid biosurfasctants mainly produced by rhodococci. Beside their known industrial applications, there is an increasing interest in the use of these biosurfactants as therapeutic agents. We have purified a trehalose lipid from Rhodococcus sp. and made a detailed study of the effect of the glycolipid on the thermotropic and structural properties of phosphatidylethanolamine membranes of different chain length and saturation, using differential scanning calorimetry, small and wide angle X-ray diffraction and infrared spectroscopy. It has been found that trehalose lipid affects the gel to liquid crystalline phase transition of phosphatidylethanolamines, broadening and shifting the transition to lower temperatures. Trehalose lipid does not modify the macroscopic bilayer organization of saturated phosphatidylethanolamines and presents good miscibility both in the gel and the liquid crystalline phases. Infrared experiments evidenced an increase of the hydrocarbon chain conformational disorder and an important dehydrating effect of the interfacial region of the saturated phosphatidylethanolamines. Trehalose lipid, when incorporated into dielaidoylphosphatidylethanolamine, greatly promotes the formation of the inverted hexagonal HII phase. These results support the idea that trehalose lipid incorporates into the phosphatidylethanolamine bilayers and produces structural perturbations which might affect the function of the membrane.  相似文献   

11.
Summary Rhodococcus sp 51T7 produced a trehalose 2,3,4,2 tetraester with surface active properties. When grown on hydrocarbon, cells were highly segmented and accumulated lipid granules in the cytoplasm. Production and glycolipid composition was affected by the nature of the carbon source. Optimal concentrations of sodium nitrate, potassium phosphate and iron were: 2.5, 1.5 and 0.01 g/L respectively. Surfactant production is growth-associated. Production was increased from 0.5 g/L to 3 g/L of glycolipid.  相似文献   

12.
13.
When Rhodococcus erythropolis AN-13 grew on aniline, a fluorescent substance accumulated in the cultural fluid. It was obtained as crystals and identified as anthranilic acid (AnA). An A was also produced from aniline following incubation with resting cells of the bacterium grown on aniline. Heated cells lost the activity to produce it, and aniline was essential for its production. The production of AnA was promoted by sodium bicarbonate; when [14C]sodium bicarbonate was added to the incubation mixture, [14C]AnA was formed. The optimal pH for AnA production by the resting cells was 7.0 to 7.5. These results suggest that microbial activities of R. erythropolis AN-13 catalyzed the formation of AnA from aniline.  相似文献   

14.
 A glycolipid-producing bacterium, Pseudomonas aeruginosa GL1, was isolated from the soil contaminated with polycyclic aromatic hydrocarbons (PAH) from a manufactured gas plant. The glycolipid produced was characterized in detail by chromatographic procedures as a mixture of four rhamnolipids, consisting of different associations of rhamnose and hydroxy fatty acids: the main component was monorhamnosyl di-3-hydroxydecanoic acid. The rhamnolipid composition presented marked analogies with a defined part of P. aeruginosa outer membrane lipopolysaccharides (lipopolysaccharide band A). Rhamnolipid production was stimulated under conditions of nitrogen limitation. Glycerol yielded higher productions than did hydrophobic carbon sources. Cell hydrophobicity decreased during growth on glycerol and on n-hexadecane whereas glycolipid production increased. P. aeruginosa GL1 was found to be unable to grow on a variety of 2, 3 and 4 cycle PAH. However, it was shown to persist after at least 12 subcultures in a bacterial population growing on a mixture of pure PAH, suggesting a physiological role for rhamnolipid as a means to enhance PAH availability in a mutualistic PAH-degrading bacterial community. Received: 4 July 1995/Received revision: 7 September 1995/Accepted: 13 September 1995  相似文献   

15.

Background  

Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery.  相似文献   

16.
R G Garrison  F K Mirikitani  J W Lane 《Microbios》1983,36(145-46):183-190
Fine structural aspects of Rhodococcus rhodochrous and R. equi are described and illustrated by electron micrographs after staining of cells by a variety of electron cytochemical procedures. The cell contents of these actinomycetous bacteria were those of a typical prokaryotic cell and consistent with that observed for other species of the Actinomycetales. Fixation with either osmium tetroxide or permanganate indicated the presence of an electron opaque substance at the wall exterior of R. rhodochrous which is thought to be composed of protein. Ruthenium red and Alcian blue-lanthanum stains for mucosubstances revealed that both species possess a capsular substance thought to be composed of a mucopolysaccharide or mucopolysaccharide-protein complex. This substance was non-reactive toward the PATAg stain for polysaccharide macromolecules containing vicinal glycol groups.  相似文献   

17.
18.
An improved method for the isolation of the biosurfactant glycolipids from Rhodococcus sp. strain H13A by using XM 50 diafiltration and isopropanol precipitation was devised. This procedure was advantageous since it removes protein coisolated when the glycolipids are obtained by organic extraction and silicic acid chromatography. The protein apparently does not contribute any biosurfactant characteristics to the glycolipids. The deacylated glycolipid backbone included only a disaccharide.  相似文献   

19.
A collection of nitrile-hydrolysing rhodococci was isolated from sediments sampled from a range of deep coastal, and abyssal and hadal trench sites in the NW Pacific Ocean, as part of our programme on the diversity of marine actinomycetes. Nitrile-hydrolysing strains were obtained by batch enrichments on nitrile substrates with or without dispersion and differential centrifugation pre-treatment of sediments, and were recovered from all of the depths sampled (approximately 1100–6500 m). Two isolates obtained from the Ryukyu (5425 m) and Japan (6475 m) Trenches, and identified as strains of Rhodococcus erythropolis,were chosen for detailed study. Both of the deep-sea isolates grew at in situ temperature (4°C), salinities (0–4% NaCl) and pressures (40–60 MPa), results that suggest, but do not prove, that they may be indigenous marine bacteria. However, the absence of culturable Thermoactinomycespoints to little or no run off of terrestrial microbiota into these particular trench sediments. Nitrile-hydrolysis by these rhodococci was catalysed by a nitrile hydratase–amidase system. The hydratase accommodated aliphatic, aromatic and dinitrile substrates, and enabled growth to occur on a much wider range of nitriles than the only other reported marine nitrile-hydrolysing R. erythropolis which was isolated from coastal sediments. Also unlike the latter strain, the nitrile hydratases of the deep-sea rhodococci were constitutive. The possession of novel growth and enzyme activities on nitriles by these deep-sea R. erythropolisstrains recommends their further development as industrial biocatalysts.  相似文献   

20.
The production of biosurfactant from Rhodococcus spp. MTCC 2574 was effectively enhanced by response surface methodology (RSM). Rhodococcus spp. MTCC 2574 was selected through screening of seven different Rhodococcus strains. The preliminary screening experiments (one-factor at a time) suggested that carbon source: mannitol, nitrogen source: yeast extract and meat peptone and inducer: n-hexadecane are the critical medium components. The concentrations of these four media components were optimized by using central composite rotatable design (CCRD) of RSM. The adequately high R2 value (0.947) and F score 19.11 indicated the statistical significance of the model. The optimum medium composition for biosurfactant production was found to contain mannitol (1.6 g/L), yeast extract (6.92 g/L), meat peptone (19.65 g/L), n-hexadecane (63.8 g/L). The crude biosurfactant was obtained from methyl tert-butyl ether extraction. The yield of biosurfactant before and after optimization was 3.2 g/L of and 10.9 g/L, respectively. Thus, RSM has increased the yield of biosurfactant to 3.4-fold. The crude biosurfactant decreased the surface tension of water from 72 mN/m to 30.8 mN/m (at 120 mg L(-1)) and achieved a critical micelle concentration (CMC) value of 120 mg L(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号