首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
高磊  朱明珠  郭政  李霞 《生物信息学》2006,4(3):105-108
利用基因表达谱数据,通过计算互作蛋白质的表达相关系数,来筛选、优化蛋白质互作网络。结果显示,利用经过筛选的互作数据,根据邻居计数法和卡方法进行功能预测的预测效果明显提高,距离待测蛋白质较远的邻居也包含着与待测蛋白质功能一致的信息。  相似文献   

2.
Eutherian mammals share a common ancestor that evolved into two main placental types, i.e., hemotrophic (e.g., human and mouse) and histiotrophic (e.g., farm animals), which differ in invasiveness. Pregnancies initiated with assisted reproductive techniques (ART) in farm animals are at increased risk of failure; these losses were associated with placental defects, perhaps due to altered gene expression. Developmentally regulated genes in the placenta seem highly phylogenetically conserved, whereas those expressed later in pregnancy are more species-specific. To elucidate differences between hemotrophic and epitheliochorial placentae, gene expression data were compiled from microarray studies of bovine placental tissues at various stages of pregnancy. Moreover, an in silico subtractive library was constructed based on homology of bovine genes to the database of zebrafish — a nonplacental vertebrate. In addition, the list of placental preferentially expressed genes for the human and mouse were collected using bioinformatics tools (Tissue-specific Gene Expression and Regulation [TiGER] — for humans, and tissue-specific genes database (TiSGeD) — for mice and humans). Humans, mice, and cattle shared 93 genes expressed in their placentae. Most of these were related to immune function (based on analysis of gene ontology). Cattle and women shared expression of 23 genes, mostly related to hormonal activity, whereas mice and women shared 16 genes (primarily sexual differentiation and glycoprotein biology). Because the number of genes expressed by the placentae of both cattle and mice were similar (based on cluster analysis), we concluded that both cattle and mice were suitable models to study the biology of the human placenta.  相似文献   

3.
4.
Successful somatic nuclear transfer-derived cloning has been reported in cattle; however, the cloned embryo is highly susceptible to death around day 60 of gestation leading to early embryonic loss. The early embryonic death is postulated to possibly arise in part from an atypical placentation. We have performed cDNA macroarray analysis using 3,353 of the previously cataloged 4,165 genes, in order to characterize the early embryonic death-associated changes in genome-wide gene expression profiles in the fetal placenta of the cow carrying somatic nuclear transfer-derived cloned embryo. A more marked difference in the expression profiles was observed between the fetal placentas of the cows with the cloned immotile embryo (CD) and with the cloned motile embryo (CL) or artificial insemination-derived motile embryo (AI), as compared to between the CL and AI placentas, suggesting an aberration of the expression profile in the CD placenta among the three placentas. Further, 291 and 77 genes showed more than twofold elevation and less than 50% reduction, respectively, in either or both of two CD (CD1 and CD2) placentas in comparison with the CL placenta, but no differential expression between the CL and AI placentas. The expression patterns of six genes in the AI, CL, and CD placentas were confirmed in an experiment with an additional sample for each of the three placentas. Among the placental genes showing the early embryonic death-associated changes of expression in the cow with the cloned embryo, IGF2 (elevated gene), and HBA1, HBA2, SPTB, and SPTBN1 genes (reduced gene) are intriguing in that the changes of expression in these genes were observed in an additional sample of CD placenta as well as the CD1 and CD2 placentas, and in that overexpression (for IGF2) and dysfunction or deficiency (for HBA1, HBA2, SPTB, and SPTBN1) result in embryonic lethality.  相似文献   

5.
Mammary glands undergo functional and metabolic changes during virgin, lactation and dry periods. A total of 122 genes were identified as differentially expressed, including 79 up-regulated and 43 down-regulated genes during lactation compared with virgin and dry periods. Gene ontology analysis showed the functional classification of the up-regulated genes in lactation, including transport, biosynthetic process, signal transduction, catalytic activity, immune system process, cell death, and positive regulation of the developmental process. Microarray data clarified molecular events in bovine mammary gland lactation.  相似文献   

6.
Suboptimal maternal nutrition during gestation results in the establishment of long-term phenotypic changes and an increased disease risk in the offspring. To elucidate how such environmental sensitivity results in physiological outcomes, the molecular characterisation of these offspring has become the focus of many studies. However, the likely modification of key cellular processes such as metabolism in response to maternal undernutrition raises the question of whether the genes typically used as reference constants in gene expression studies are suitable controls. Using a mouse model of maternal protein undernutrition, we have investigated the stability of seven commonly used reference genes (18s, Hprt1, Pgk1, Ppib, Sdha, Tbp and Tuba1) in a variety of offspring tissues including liver, kidney, heart, retro-peritoneal and inter-scapular fat, extra-embryonic placenta and yolk sac, as well as in the preimplantation blastocyst and blastocyst-derived embryonic stem cells. We find that although the selected reference genes are all highly stable within this system, they show tissue, treatment and sex-specific variation. Furthermore, software-based selection approaches rank reference genes differently and do not always identify genes which differ between conditions. Therefore, we recommend that reference gene selection for gene expression studies should be thoroughly validated for each tissue of interest.  相似文献   

7.
Three closely related clones of leukemic lymphoid CEM cells were compared for their gene expression responses to the glucocorticoid dexamethasone (Dex). All three contained receptors for Dex, but only two responded by undergoing apoptosis. After a time of exposure to Dex that ended late in the interval preceding onset of apoptosis, gene microarray analyses were carried out. The results indicate that the expression of a limited, distinctive set of genes was altered in the two apoptosis-prone clones, not in the resistant clone. That clone showed altered expression of different sets of genes, suggesting that a molecular switch converted patterns of gene expression between the two phenotypes: apoptosis-prone and apoptosis-resistant. The results are consistent with the hypothesis that altered expression of a distinctive network of genes after glucocorticoid administration ultimately triggers apoptosis of leukemic lymphoid cells. The altered genes identified provide new foci for study of their role in cell death.  相似文献   

8.
9.
Structural conservation of cytosolic phosphoenolpyruvate carboxykinase protein and mRNA sequence was found in all species examined from rodents to human. The mitochondrial isoenzyme, in all species tested, represents a distinct protein. Moreover, irrespective of the ratio of cytosolic to mitochondrial isoenzyme, cytosolic phosphoenolpyruvate carboxykinase activity in the human as in the rat is controlled at the level of gene expression and through the same multiple hormonal stimulation. This evolutionary conservation of the cytosolic phosphoenolpyruvate carboxykinase structure and mode of regulation supports the enzymes' physiological importance in mammals.  相似文献   

10.
The multiple testing problem attributed to gene expression analysis is challenging not only by its size, but also by possible dependence between the expression levels of different genes resulting from coregulations of the genes. Furthermore, the measurement errors of these expression levels may be dependent as well since they are subjected to several technical factors. Multiple testing of such data faces the challenge of correlated test statistics. In such a case, the control of the False Discovery Rate (FDR) is not straightforward, and thus demands new approaches and solutions that will address multiplicity while accounting for this dependency. This paper investigates the effects of dependency between bormal test statistics on FDR control in two-sided testing, using the linear step-up procedure (BH) of Benjamini and Hochberg (1995). The case of two multiple hypotheses is examined first. A simulation study offers primary insight into the behavior of the FDR subjected to different levels of correlation and distance between null and alternative means. A theoretical analysis follows in order to obtain explicit upper bounds to the FDR. These results are then extended to more than two multiple tests, thereby offering a better perspective on the effect of the proportion of false null hypotheses, as well as the structure of the test statistics correlation matrix. An example from gene expression data analysis is presented.  相似文献   

11.
Echinoderms and in particular brittle stars display a remarkable ability to regenerate lost or damaged tissues. They offer an excellent model in which to study regeneration displaying extensive regenerative ability and close relationship to vertebrates providing the opportunity for comparative studies. Previous studies of gene expression during arm regeneration in brittle stars have focused on single genes commonly associated with the regenerative process. In this study we present the first microarray investigation of gene expression during arm regeneration in the brittle star Amphiura filiformis. We show the large-scale gene expression changes associated with the complex process of regeneration with over 50% of the clones measured showing a significant change at some point during the process when compared to non-regenerating arms. Particular attention is paid to genes associated with Hox gene expression regulation, neuronal development and the bone morphogenic protein BMP-1. Our data give an insight into the molecular control required during the various stages of regeneration from the stem cell rich blastema stage through to the highly differentiated regenerate. This work also forms an important basis for future gene expression investigations in this emerging model of limb regeneration.  相似文献   

12.
13.
14.
15.
16.
The purpose was to assess the developmental competence of the in vitro or in vivo matured human oocytes as well as the apoptotic genes expression of cumulus cells (CCs) regarding nuclear maturity status of associated oocytes retrieved from stimulated ICSI cycles. A total of 590 oocytes and the associated CCs were retrieved and divided into groups of test and control according to the nuclear maturity status in order to the developmental evaluation as well as expression patterns of apoptosis-related genes using real time PCR. The fertilization and embryo formation rates were 60.3% and 87.5% vs.69.1% and 92.8% in test and control groups, respectively. Good quality embryos on day 3 were 62.2% in test and 69.1% in control groups. There were significant differences in the rates of normal fertilized as well as unfertilized oocytes between the groups. Also, mRNA levels of some apoptotic genes were significantly higher in the CCs obtained from immature oocytes among patients with premature ovarian factors (POF) rather than other infertility etiologies (p?<?0.001). The data demonstrated the developmental competence of in vitro matured oocytes ?even to good quality cleavage embryos- is not completely consistent with molecular integrity and well-mannered gene expression patterns resulting to ICSI success. It seems that using immature oocytes could be helpful for patients at risk of ovarian hyperstimulation syndrome (OHSS) as the same as patients with diminished ovarian reserve.  相似文献   

17.
18.
19.

Background

The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males.

Results

Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity.

Conclusions

This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-799) contains supplementary material, which is available to authorized users.  相似文献   

20.
意大利蝗卵发育过程中血蓝蛋白基因表达分析   总被引:2,自引:0,他引:2  
【目的】意大利蝗Calliptamus italicus是新疆草原的主要优势危害种,以卵在土壤中越冬。呼吸代谢可反映蝗卵的生理状态,呼吸蛋白对于呼吸系统不完善的蝗卵尤为重要。本研究旨在明确意大利蝗卵发育过程中血蓝蛋白基因的表达情况。【方法】采用实时荧光定量PCR方法检测不同发育阶段的蝗卵以及1龄蝗蝻的血蓝蛋白2个亚基基因Hc1和Hc2的表达量。【结果】根据解剖形态观察,将意大利蝗越冬卵的整个发育过程分为10个阶段,包括9个卵发育阶段(C-Ⅰ-C-Ⅹ)和1龄蝗蝻阶段(C-Ⅹ)。Hc1和Hc2在越冬蝗卵各发育阶段以及1龄蝗蝻中均有表达。其中,在蝗卵早期发育阶段(C-Ⅰ, C-Ⅱ和C-Ⅲ),Hc1表达量逐渐增加,C-Ⅲ阶段表达量显著高于C-Ⅰ和C-Ⅱ阶段;滞育阶段(C-Ⅳ, C-Ⅴ和C-Ⅵ),胚胎发育停滞,Hc1表达量较C-Ⅲ,C-Ⅶ和C-Ⅷ阶段低;滞育后发育阶段(C-Ⅶ和C-Ⅷ),蝗卵解除滞育,快速发育,Hc1表达量较早期发育阶段和滞育阶段高,其中,C-Ⅷ阶段Hc1表达量最高(212.3156±10.5470),显著高于其他所有阶段;1龄蝗蝻(C-Ⅹ)的Hc1表达量最低,为0.4017±0.1010。Hc2表达量在C-Ⅴ阶段最高(679.7511±54.5719),显著高于其他所有阶段;除C-Ⅴ阶段外,其他各阶段之间Hc2表达量差异均不显著。Hc1在蝗卵滞育后阶段高表达,而Hc2在蝗卵滞育阶段高表达。【结论】血蓝蛋白亚基基因Hc1和Hc2在整个意大利蝗卵发育过程均有表达,且具有阶段特异性。Hc1与Hc2协同作用为蝗卵发育供氧,其中,Hc1主要负责蝗卵滞育后发育期间的氧气运载,而Hc2主要维持滞育期间的氧气运载,且载氧效率较低。研究结果可为进一步探讨意大利蝗卵的抗逆机制提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号