首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internode elongation is an important agronomic trait in rice that is associated with lodging, yield, flooding adaptation, and hybrid seed production. We identified a novel rice mutant line showing a shortened uppermost internode among the rice Ac/Ds insertional mutant population and named it shortened uppermost internode 4 (sui4). Interestingly, T1 plants of this line segregated into three phenotypes: extremely shortened uppermost internode-type, normal wild-type, and intermediate-type. The phenotypes of F1 plants and F2 plants from the cross of sui4 with its original variety, Dongjin, indicated that the SUI4 gene shows incomplete dominance or semidominance. Because the Ds genotypes did not co-segregate with the sui4 phenotypes, we performed mapping of this gene with 273 F2 plants from a cross between sui4 and Milyang23. Primary mapping revealed that the SUI4 locus was located between the S07012 and S07015 markers on rice chromosome 7. Further fine mapping with 36 F3 lines derived from F2 plants that have recombination in this region narrowed down the location of SUI4 to the 1.1-Mbp interval of RM1253S07015.  相似文献   

2.
The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.  相似文献   

3.
During their life cycle, higher plants pass through a series of growth phases that are characterized by the production of morphologically distinct vegetative and reproductive organs and by different growth patterns. Three major phases have been described in Arabidopsis: juvenile vegetative, adult vegetative, and reproductive. In this report we describe a novel, phase-specific mutant in Arabidopsis, compact inflorescence (cif). The most apparent aspect of the cif phenotype is a strong reduction in the elongation of internodes in the inflorescence, resulting in the formation of a floral cluster at the apical end of all reproductive shoots. Elongation and expansion of adult vegetative rosette leaves are also compromised in mutant plants. The onset of the cif trait correlates closely with morphological changes marking the phase transition from juvenile to adult, and mutant plants produce normal flowers and are fully fertile. Hence the cif phenotype appears to be adult vegetative phase-specific. Histological sections of mutant inflorescence internodes indicate normal tissue specification, but reduced cell elongation compared to wild-type. compact inflorescence is inherited as a two-gene trait involving the action of a recessive and a dominant locus. These two cif genes appear to be key components of a growth regulatory pathway that is closely linked to phase change, and specifies critical aspects of plant growth and architecture including inflorescence internode length.  相似文献   

4.
Luo A  Qian Q  Yin H  Liu X  Yin C  Lan Y  Tang J  Tang Z  Cao S  Wang X  Xia K  Fu X  Luo D  Chu C 《Plant & cell physiology》2006,47(2):181-191
Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.  相似文献   

5.
Post-embryonic plant growth is dependent on a functional shoot apical meristem (SAM) that provides cells for continuous development of new aerial organs. However, how the SAM is dynamically maintained during vegetative development remains largely unclear. We report here the characterization of a new SAM maintenance mutant, sha1-1 (shoot apical meristem arrest 1-1), that shows a primary SAM-deficient phenotype at the adult stage. The SHA1 gene encodes a novel RING finger protein, and is expressed most intensely in the shoot apex. We show that, in the sha1-1 mutant, the primary SAM develops normally during the juvenile vegetative stage, but cell layer structure becomes disorganized after entering the adult vegetative stage, resulting in a dysfunctional SAM that cannot initiate floral primordia. The sha1-1 SAM terminates completely at the stage when the wild-type begins to bolt, producing adult plants with a primary inflorescence-deficient phenotype. These observations indicate that SHA1, a putative E3 ligase, is required for post-embryonic SAM maintenance by controlling proper cellular organization.  相似文献   

6.
7.
The effects of altered endogenous indole-3-acetic (IAA) levels on elongation in garden pea (Pisum sativum L.) plants were investigated. The auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA) were applied to elongating internodes of wild-type and mutant lkb plants. The lkb mutant was included because elongating lkb internodes contained 2- to 3-fold less free IAA than those of the wild type. In the wild type, TIBA reduced both the IAA level and internode elongation below the site of application. Both TIBA and HFCA strongly promoted the elongation of lkb internodes and also raised IAA levels above the application site. The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) also markedly increased internode elongation in lkb plants and virtually restored petioles and tendrils to their wild-type length. In contrast, treatment of wild-type plants with TIBA, HFCA, or 2,4-D caused little or no increase in elongation above the application site. The ethylene synthesis inhibitor aminoethoxyvinylglycine also increased stem elongation in lkb plants, and combined application of HFCA and aminoethoxy-vinylglycine restored lkb internodes to the wild-type length. It is concluded that the level of IAA in wild-type internodes is necessary for normal elongation, and that the reduced stature of lkb plants is at least partially attributable to a reduction in free IAA level in this mutant.  相似文献   

8.
In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography–quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.  相似文献   

9.
A dwarf mutant glu was identified from screening of T-DNA tagged rice population. Genetic analysis of the T1 generation of glu revealed that a segregation ratio of wild-type:dwarf phenotype was 3:1, suggesting that the mutated phenotype was controlled by a single recessive nuclear locus. The mutated gene OsGLU1, identified by Tail-PCR, encodes a putative membrane-bound endo-1,4-β-D-glucanase, which is highly conserved between mono- and dicotyledonous plants. Mutation of OsGLU1 resulted in a reduction in cell elongation, and a decrease in cellulose content but an increase in pectin content, suggesting that OsGLU1 affects the internode elongation and cell wall components of rice plants. Transgenic glu mutants harboring the OsGLU1 gene complemented the mutation and displayed the wild-type phenotype. In addition, OsGLU1 RNAi plants showed similar phenotype as the glu mutant has. These results indicate that OsGLU1 plays important roles in plant cell growth. Gibberellins and brassinosteroids induced OsGLU1 expression. In rice genome, endo-1,4-β-D-glucanases form a multiple gene family with 15 members, and each may have a distinct expression pattern in different organs. These results indicate that endo-1, 4-β-D-glucanases may play diverse roles in growth and developmental process of rice plants. Hua-Lin Zhou, Si-Jie He: These authors contributed equally to this work  相似文献   

10.
A shoot overgrowth mutant of rice ( Oryza sativa L.), accelerated internode overgrowth-1 ( ao-1), is marked by accelerated longitudinal elongation of aerial parts and overgrowth of internodes at the vegetative stage. The physiological properties of ao-1 were similar to those of wild plants treated with a saturating level of exogenous gibberellins (GAs), except for the internode-overgrowth phenotype, which was not mimicked by GA-treated wild plants. The ao-1 mutant was less sensitive to a GA biosynthesis inhibitor, Uniconazole-P, than the wild type. Dwarf alleles of three loci, including two GA-sensitive and one GA-insensitive mutation, were introduced to produce double-mutants with ao-1, but the overgrowth phenotype was not suppressed in double-homozygous mutants. These results suggest that the overgrowth phenotype of ao-1 is caused by abolition of GA signaling rather than by GA overproduction. It is likely that a part of the shoot regulation system of ao-1 is saturated with the GA signal. As a possible model consistent with the results, we propose that AO-1 protein acts as a negative regulator in GA signal transduction.  相似文献   

11.
The ACT2 gene, encoding one of eight actin isovariants in Arabidopsis, is the most strongly expressed actin gene in vegetative tissues. A search was conducted for physical defects in act2-1 mutant plants to account for their reduced fitness compared with wild type in population studies. The act2-1 insertion fully disrupted expression of ACT2 RNA and significantly lowered the level of total actin protein in vegetative organs. The root hairs of the act2-1 mutants were 10% to 70% the length of wild-type root hairs, and they bulged severely at the base. The length of the mutant root hairs and degree of bulging at the base were affected by adjusting the osmolarity and gelling agent of the growth medium. The act2-1 mutant phenotypes were fully rescued by an ACT2 genomic transgene. When the act2-1 mutation was combined with another vegetative actin mutation, act7-1, the resulting double mutant exhibited extensive synergistic phenotypes ranging from developmental lethality to severe dwarfism. Transgenic overexpression of the ACT7 vegetative isovariant and ectopic expression of the ACT1 reproductive actin isovariant also rescued the root hair elongation defects of the act2-1 mutant. These results suggest normal ACT2 gene regulation is essential to proper root hair elongation and that even minor differences may cause root defects. However, differences in the actin protein isovariant are not significant to root hair elongation, in sharp contrast to recent reports on the functional nonequivalency of plant actin isovariants. Impairment of root hair functions such as nutrient mining, water uptake, and physical anchoring are the likely cause of the reduced fitness seen for act2-1 mutants in multigenerational studies.  相似文献   

12.
13.
14.
15.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

16.
Mazzella MA  Bertero D  Casal JJ 《Planta》2000,210(3):497-501
 Vegetative plants of Arabidopsis thaliana (L.) Heynh. form a compact rosette of leaves in which internode growth is virtually arrested. Rapid extension of the internodes occurs after flower buds are present in the reproductive apex. Under natural radiation, continuous light from fluorescent lamps, or short photoperiods of light from fluorescent lamps, plants of the phyB cry1 double mutant (lacking both phytochrome B and cryptochrome 1) did not form normal rosettes because all the internodes showed some degree of elongation. Internode elongation was weak in the phyB single mutant and absent in the cry1 mutant, indicating redundancy between phytochrome B and cryptochrome 1. The absence of phytochrome A caused no effects. The failure to form normal rosettes was conditional because internode elongation was arrested at low temperatures in all the mutant combinations. In contrast, the temperature dependence of phytochrome B and cryptochrome 1 effects on hypocotyl growth was weak. The elongation of the internodes in phyB cry1 was not accompanied by early flowering as showed by the lack of effects on the final number of leaves. Apex dissection indicated that in phyB cry1 double mutants internode elongation anticipated the transition from the vegetative to the reproductive stage. Thus, stem growth in Arabidopsis thaliana is not fully dependent on the program of reproductive development. Received: 2 June 1999 / Accepted: 13 August 1999  相似文献   

17.
温度对温敏核不育水稻eui突变体最上节间伸长的影响   总被引:1,自引:0,他引:1  
以培矮64S为对照, 采用田间调查和人工温度处理方法研究了温度对温敏核不育水稻(Oryza sativa)eui突变体(双低培eS)最上节间伸长的影响。结果表明, 双低培eS穗颈伸出度与抽穗前12–17天(花粉母细胞形成期至减数分裂期)的日均温度呈显著负相关。在温度敏感期分别进行人工温度处理, 在18–26℃条件下穗颈伸出度为正值且不包颈; 在28℃条件下出现包颈现象。在可育温度(20℃)和不育温度(24℃)条件下, 双低培eS最上节间中GA1、IAA和ZR含量极显著地高于培矮64S, 而ABA含量则显著低于培矮64S, 最上节间中最内层薄壁细胞数目分别比培矮64S多1 177和823个, 细胞平均长度分别比培矮64S长23.2和16.7 μm。温敏核不育水稻eui突变体最上节间伸长是由于节间最内层薄壁细胞数目增多和细胞长度增加双重作用所致, 其中以细胞伸长为主, 且随着处理温度的升高, 最上节间最内层薄壁细胞数目减少, 细胞平均长度变短。eui基因还可能通过调节激素间的平衡来控制温敏核不育水稻eui突变体最上节间的伸长生长。  相似文献   

18.
We investigated the effect of partial submergence on internode elongation in a Bangladesh variety of floating or deep water rice (Oryza sativa L., cv. Habiganj Aman II). In plants which were at least 21 days old, 7 days of submergence led to a 3- to 5-fold increase in internodal length. During submergence, the ethylene concentration in the internodes increased from about 0.02 to 1 microliters per liter. Treatment of nonsubmerged plants with ethylene also stimulated internode elongation. When ethylene synthesis in partially submerged plants was blocked with aminooxyacetic acid and aminoethoxyvinylglycine, internode elongation was inhibited. This growth inhibition was reversed when ethylene biosynthesis was restored with 1-aminocyclopropane-1-carboxylic acid (ACC). Radio-labeling studies showed that ethylene in floating rice was synthesized from methionine via ACC. Internodal tissue from submerged plants had a much higher capacity to form ethylene than did internodal tissue from nonsubmerged plants. This increase in ethylene synthesis appeared to be due to enhanced ACC formation rather than to increased conversion of ACC to ethylene. Our results indicate that ethylene produced during submergence is required for the stimulation of growth in submerged floating rice plants.  相似文献   

19.
The veg1 ( vegetative ) mutant in pea ( Pisum sativum L.) does not flower under any circumstances and gi ( gigas ) mutants remain vegetative under certain conditions. gi plants are deficient in production of floral stimulus, whereas veg1 plants lack a response to floral stimulus. During long days in particular, these non-flowering mutant plants eventually enter a stable compact phase characterised by a large reduction in internode length, small leaves and growth of lateral shoots from the upper-stem (aerial) nodes. The first-order laterals in turn produce second-order laterals and so on in a reiterative pattern. The apical bud is reduced in size but continues active growth. Endogenous hormone measurements and gibberellin application studies with gi-1 , gi-2 and veg1 plants indicate that a reduction in gibberellin and perhaps indole-3-acetic acid level may account, at least partially, for the compact aerial shoot phenotype. In the gi-1 mutant, the compact phenotype is rescued by transfer from a 24- to an 8-h photoperiod. We propose that in plants where flowering is prevented by a lack of floral stimulus or an inability to respond, the large reduction in photoperiod gene activity during long days may lead to a reduction in apical sink strength that is manifest in an altered hormone profile and weak apical dominance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号