首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for obtaining transgenic sweet orange plants was developed in which positive selection (Positech) based on the Escherichia coli phosphomannose-isomerase (PMI) gene as the selectable marker gene and mannose as the selective agent was used. Epicotyl segments from in vitro-germinated plants of Valencia, Hamlin, Natal and Pera sweet oranges were inoculated with Agrobacterium tumefaciens EHA101-pNOV2116 and subsequently selected on medium supplemented with different concentrations of mannose or with a combination of mannose and sucrose as a carbon source. Genetic transformation was confirmed by PCR and Southern blot. The transgene expression was evaluated using a chlorophenol red assay and isoenzymes. The transformation efficiency rate ranged from 3% to 23.8%, depending on cultivar. This system provides an efficient manner for selecting transgenic sweet orange plants without using antibiotics or herbicides.Abbreviations BAP Benzylaminopurine - CPR Chlorophenol red - EGTA Ethylene glycol-0-0- bis (2, aminoethyl) N, N, N, N tetraacetic acid - MTT [3-(4,5-Dimethyl thiazol-2-YL)-2,5-diphenyl] tetrazolium bromide - PMI Phosphomannose isomerase (EC 5.3.1.8) - PMS Phenazine methosulphate Communicated by L. Peña  相似文献   

2.
A new selectable marker system has been adapted for use in Agrobacterium-mediated transformation of maize. This selection system utilizes the pmi gene encoding for phosphomannose-isomerase that converts mannose-6-phosphate to fructose-6-phosphate. Only transformed cells are capable of utilizing mannose as a carbon source. Agrobacterium-mediated transformation of immature embryos followed by a pre-selection of 10–14 days prior to selection at a level of 1% mannose and 0.5% sucrose led to the recovery of trangenic lines of a frequency of as high as 30% in about 12 weeks. Molecular and genetic analysis showed that selected plants contained the pmi gene and that the gene was transmitted to the progeny in a Mendelian fashion. Received: 24 August 1999 / Revision received: 27 September 1999 / Accepted: 9 November 1999  相似文献   

3.
Summary A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T0) representing 10 independent events were characterized. Seven of the 10 independent T0 events co-expressed GUS. Progeny analysis was conducted by sowing the T1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mgl−1 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.  相似文献   

4.
Several factors that affect the frequency of organogenesis in apple leaf explants were examined for the scion cultivars Empire, Freedom, Golden Delicious, Liberty, McIntosh, and Mutsu and for the rootstocks Malling 7A and Malling 26. The main factors affecting morphogenesis were BA concentration, basal medium, leaf explant origin and maturity, explant orientation, and photosynthetic photon flux. Depending on the genotype, optimal regeneration was obtained using either 22.2 or 31.1 M BA and the N6 basal medium, with the exception of Golden Delicious which regenerated better on MS medium. After 6 weeks, the average number of shoots per segment varied from 5 to 16, and the percentage of regeneration between 70 and 100%, depending on the genotype tested and the maturity of the explant. Regeneration capacity increased dramatically from the tip towards the base of the leaf, and was higher from the middle to the proximal end.Cefotaxime and carbenicillin, two antibiotics commonly used during transformation studies to eliminate Agrobacterium tumefaciens from plant tissue, were tested to determine their effect on morphogenesis. Cefotaxime at a dose of 250 mg 1-1 enhanced regeneration and shoot development, whereas carbenicillin at a dose of 500 mg l-1 induced abundant callus formation and inhibited regeneration. Kanamycin, a widely used selection agent for plant transformation, strongly inhibited regeneration even at very low doses. Schemes for selection and recovery of transgenic apple plants when kanamycin is used as the selection agent are discussed.Abbreviations BA benzyladenine - Cef cefotaxime - Crb carbenicillin - IBA indolebutyric acid - Kan kanamycin - LS Linsmaier and Skoog (1965) medium - M Malling - MS Murashige and Skoog (1962) medium - NAA naphthaleneacetic acid - N6 medium (Chu et al. 1975) as modified by Welander (1988) - PPF photosynthetic photon flux  相似文献   

5.
Summary A series of experiments involving defoliation or water stress at different dates indicated that either of these treatments can make potted apple trees flower a second time in any one year, as long as the treatment is given near the end of July. The results suggest that the reflowering after a period of water stress was primarily a result of the loss of leaves that occurred when the plants were subsequently rewatered. Reflowering normally occurred only if flower primordia had already differentiated at the time of the treatment. There was an indication that in early July water stress was more effective than defoliation at stimulating reflowering.  相似文献   

6.
The present study aimed to dissect tree architectural plasticity into genetic, ontogenetic and environmental effects over the first 4 years of growth of an apple F1 progeny by means of quantitative traits loci (QTL) mapping. Both growth and branching processes were phenotyped on the consecutive annual shoots of different axes within a tree. For each studied trait, predicted values (best linear unbiased predictors, BLUPs) of the genotypic (G) effect or its interaction with tree age (G×A) and climatic year (G×Y) were extracted from mixed linear models of repeated data. These BLUPs, which are independent from autocorrelations between repeated measurements, were used for QTL mapping. QTL detection power was improved by this two-step approach. For each architectural process, numerous QTLs were detected and some particularly interesting co-localised in common genomic regions, for internode lengthening, top diameter, and number and percentage of axillary shoots. When several QTLs were detected for a given trait, global models were estimated, which explained a maximum of 40% of the total variance for both internode length and top diameter and 28% for branching. QTLs detected for BLUPs of G×Y effects were interpreted as resulting from the interaction between genetic maximal potential of growth and climatic factors, while those for G×A effects were interpreted in relation to tree ontogeny. Most of the latter ones were found to be concomitant with key development stages during which the trait average started to decrease, but with different magnitudes depending on genotype. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Isolated somatic embryos from petiole-derived callus cultures ofVitis rupestris Scheele have been employed in experiments on genetic transformation. Co-cultivation of somatic embryos during embryogenesis induction withAgrobacterium tumefaciens strain LBA4404, which contains the plasmid pBI121 carrying the neomycin phosphotranspherase and the-glucuronidase genes, produced transformed cellular lines capable of recurrent somatic embryogenesis. Precocious selection for high levels of kanamycin (100 mgl-1) was an important part of our transformation protocol. Transformed lines still have strong-glucuronidase expression as well as stable insertion of the marker genes after 3 years of in-vitro culture, during which they have maintained their capacity to organize secondary embryos and to regenerate transgenic plants with an agreeable efficiency (13%).  相似文献   

8.
Insecticidal proteins are a potential resource to enhance resistance to insect pests in transgenic plants. Here, we describe the generation and analysis of the apple cultivar ‘Royal Gala’ transgenic for Nicotiana alata (N. alata) proteinase inhibitor (PI) and the impact of this PI on the growth and development of the Epiphyas postvittiana (light-brown apple moth). A cDNA clone encoding a proteinase inhibitor precursor from N. alata (Na-PI) under the control of either a double 35S promoter or a promoter from a ribulose-1,5-bisphosphate carboxylase small sub-unit gene (rbcS-E9 promoter) was stably incorporated into ‘Royal Gala’ apple using Agrobacterium-mediated transformation. A 40.3 kDa Na-PI precursor protein was expressed and correctly processed into 6-kDa proteinase inhibitors in the leaves of transgenic apple lines. The 6-kDa polypeptides accumulated to levels of 0.05 and 0.1% of the total soluble protein under the control of the rbc-E9 promoter and the double 35S promoter, respectively. Light-brown apple moth larvae fed with apple leaves expressing Na-PI had significantly reduced body weight after 7 days of feeding and female pupae were 19–28% smaller than controls. In addition, morphological changes such as pupal cases attached to the wing, deformed wings, deformed body shape, and pupal cases and curled wings attached to a deformed body were observed in adults that developed from larvae fed with apple leaves expressing Na-PI, when compared to larvae fed with the non-transformed apple leaves.  相似文献   

9.
A 5.5 kb Eco RI fragment containing a vicilin gene was selected from a Pisum sativum genomic library, and the protein-coding region and adjacent 5 and 3 regions were sequenced. A DNA construction comprising this 5.5 kb fragment together with a gene for neomycin phosphotransferase II was stably introduced into tobacco using an Agrobacterium tumefaciens binary vector, and the fidelity of expression of the pea vicilin gene in its new host was studied. The seeds of eight transgenic tobacco plants showed a sixteen-fold range in the level of accumulated pea vicilin. The level of accumulation of vicilin protein and mRNA correlated with the number of integrated copies of the vicilin gene. Pea vicilin was confined to the seeds of transgenic tobacco. Using immunogold labelling, vicilin was detected in protein bodies of eight out of ten embryos (axes plus cotyledons) and, at a much lower level, in two out of eleven endosperms. Pea vicilin was synthesized early in tobacco seed development; some molecules were cleaved as is the case in pea seeds, yielding a major parental component of M r50000 together with a range of smaller polypeptides.  相似文献   

10.
A comprehensive developmental survey of leaf area, chlorophyll, photosynthetic rate, leaf resistance, transpiration ratio, CO2 compensation point and photorespiration was conducted in apple. The largest changes in each of the photosynthetic characteristics studied took place during the earliest stages of leaf development, coinciding with the period of greatest leaf expansion and chlorophyll synthesis. During early development, photosynthesis increased 5-fold, reaching a maximum rate of 40 mg CO2 dm-2 hr-1 at a leaf plastochron index (LPI) of 10. During this same period, leaf resistance, transpiration ratio, CO2 compensation point and mesophyll resistance decreased, while carboxylation efficiency increased. Two especially interesting aspects of the data discussed are simultaneous changes that occur at a LPI of 10 and 12 in all of the photosynthetic characteristics examined and an apparent decrease in photorespiration as leaves age. From our results it is clear that stage of leaf development is an important factor affecting the rate of photosynthesis and photorespiration.Scientific Paper No. 5687, College of Agriculture, Washington State University, Pullman. This work is supported by the National Science Foundation Grant 80-10958 and the Columbia River Orchards Foundation.  相似文献   

11.
This study aimed at establishing a protocol to increase the number of regenerated shoots and to limit the recovery of “escapes” during the regeneration of transgenic flax plants (cv Barbara). Here, we describe how light, adapted media and selection scheme could stimulate the transformation process, the organogenic potentiality of calli (by a factor of 3.2) and accelerate the transgenic shoot regeneration (by a factor of about 2). On comparison of the transformation rate observed while using low light (LL) and high light (HL) a considerable enhancement from 0.12 to 5.7% was evident. The promotive effect of light might also had a direct beneficial effect on transgenic plant production time leading to a reduction of more than 4 months in the time need to obtain transgenic seeds. All data indicate that HL plays a role on growth and on protein, rubisco and pigment contents by stimulating the gene implicated in photosynthetic and Calvin cycle processes.  相似文献   

12.
Summary A procedure for the regeneration of fertile transgenic white mustard (Sinapis alba L.) is presented. The protocol is based on infection of stem explants of 7–9 day old plants with an Agrobacterium tumefaciens strain harboring a disarmed binary vector with chimeric genes encoding neomycin phosphotransferase and -glucuronidase. Shoots are regenerated from callus-forming explants within 3–4 weeks. Under selection, 10% of the explants with transgenic embryonic callus develop into fertile transgenic plants. Rooting shoots transferred to soil yield seeds within 14–16 weeks following transformation. Integration and expression of the T-DNA encoded marker genes was confirmed by histochemical glucuronidase assays and Southern-DNA hybridization using primary transformants and S1-progeny. The analysis showed stable integration and Mendelian inheritance of trans-genes in transformed Sinapis lines.Abbreviations BAP 6-benzylaminopurine - CaMV cauliflower mosaic virus - GUS -glucuronidase - IBA indole-3-butyric acid - IM infection medium - NAA 1-naphthalene acetic acid - neo gene encoding NPTII - NPTII neomycin phosphotransferase - RIM root-inducing medium - SEM shoot-elongation medium - SIM shoot-inducing medium - t-nos polyadenylation site of the nopaline synthase gene - uidA gene encoding GUS - WM wash medium - X-Gluc 5-bromo-4-chloro-3-indolyl -D-glucuronide  相似文献   

13.
A new method for the selection of transgenic rice plants without the use of antibiotics or herbicides has been developed. The phosphomannose isomerase (PMI) gene from Escherichia coli has been cloned and consitutively expressed in japonica rice variety TP 309. The PMI gene was transferred to immature rice embryos by Agrobacterium-mediated transformation, which allowed the selection of transgenic plants with mannose as selective agent. The integration and expression of the transgene was confirmed by Southern and northern blot analysis and the activity of PMI indirectly proved with the chlorophenol red assay. The results of genetic analysis showed that the transgenes were segregated in a Mendelian fashion in the T1 generation. The establishment of this selection system in rice provides an efficient way for producing transgenic plants without using antibiotics or herbicides with a transformation frequency of up to 41%.  相似文献   

14.
The apple rootstock Jork 9 was transformed using four different Agrobacterium rhizogenes virulent strains. The mannopine strain 8196 gave the best results in the production of chimeric plants compared to two agropine strains (A4 and 15834) and one cucumopine strain. Shoot regeneration was performed on both untransformed and transformed roots. Optimum combination and concentration of thidiazuron (TDZ) and -naphtaleneacetic acid (NAA) was different between untransformed and transformed roots. From the transformed roots seven shoots were obtained and propagated as individual clones. All shoots from these clones rooted on a hormone-free medium contrary to untransformed shoots that did not root under similar culture conditions. Differences in the morphology of the leaves and stems were observed between the clones. The transformed status of the different clones was verified with mannopine tests, PCR and Southern blot analyses. Five clones contained the mas1', the ORF 13 and the rolB genes, whereas two clones contained only the rolB gene.  相似文献   

15.
Summary Twenty-three independent kanamycin resistant lines were obtained after cocultivation of longterm embryogenic cultures of three Asparagus officinalis L. genotypes with an Agrobacterium tumefaciens strain harboring ß-glucuronidase and neomycin phosphotransferase II genes. All the lines showed ß-glucuronidase activity by histological staining. DNA analysis by Southern blots of the kanamycin resistant embryogenic lines and of a plant regenerated from one of them confirmed the integration of the T-DNA.Abbreviations GUS ß-glucuronidase - X-Gluc 5-bromo-4-chloro-3indolyl ß-D-glucuronic acid - NPT II neomycin phosphotransferase II  相似文献   

16.
A simple genetic basis for the red/yellow skincolor polymorphism in apple was verified using DNA markers. Bulked segregant analysis identified one 10-base oligomer that generated different fragments in each of the bulks. After testing the primer in four populations, two fragments were found to be associated with red skin color and another two fragments associated with yellow skin color. Three of the fragments (1160, 1180, and 1230 bp) were partly sequenced and found to share high sequence homology, suggesting these were generated from the same locus. A pair of universal primers were designed to amplify the fragments. In the Rome Beauty x White Angel population, two fragments were associated with red skin color; one fragment designated as A1 (1160 bp) was from Rome Beauty and another fragment (A2, 1180 bp) was from White Angel. Progeny possessing both fragments, or either one, had red fruit. Both parents displayed an alternate fragment, a1 (1230 bp), associated with yellowskinned fruit. In three other crosses tested, only fragment A1 co-segregated with red skin color; two fragments, a1 and a2 (1230 bp and 1320 bp), were associated with yellow skin color. Our results are consistent with the hypothesis that the red/yellow dimorphism is controlled by a monogenic system with the presence of the red anthocyanin pigmentation being dominant. There was no indication that other modifier genes could reverse the effect of the locus (R f ) linked to the markers. Examination of amplification products in 56 apple cultivars and advanced breeding selections demonstrated that the universal primers could be used to correctly predict fruit skin color in most cases.  相似文献   

17.
Cotton (Gossypium hirsutum L.) cotyledon tissues have been efficiently transformed and plants have been regenerated. Cotyledon pieces from 12-day-old aseptically germinated seedlings were inoculated with Agrobacterium tumefaciens strains containing avirulent Ti (tumor-inducing) plasmids with a chimeric gene encoding kanamycin resistance. After three days cocultivation, the cotyledon pieces were placed on a callus initiation medium containing kanamycin for selection. High frequencies of transformed kanamycin-resistant calli were produced, more than 80% of which were induced to form somatic embryos. Somatic embryos were germinated, and plants were regenerated and transferred to soil. Transformation was confirmed by opine production, kanamycin resistance, immunoassay, and DNA blot hybridization. This process for producing transgenic cotton plants facilitates transfer of genes of economic importance to cotton.  相似文献   

18.
Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer.  相似文献   

19.
Agrobacterium-mediated transformation is the method of choice to engineer desirable genes into plants. Here we describe a protocol for demonstrating T-DNA transfer from Agrobacterium into the economically important graminaceous plant maize. Expression of the T-DNA-located GUS gene was observed with high efficiency on shoots of young maize seedlings after cocultivation with Agrobacterium.  相似文献   

20.
In order to meet the future requirement of using non-antibiotic resistance genes for the production of transgenic plants, we have adapted the selectable marker system PMI/mannose to be used in Agrobacterium-mediated transformation of flax (Linum usitatissimum L.) cv. Barbara. The Escherichia coli pmi gene encodes a phosphomannose isomerase (E.C. 5.1.3.8) that converts mannose-6-phosphate, an inhibitor of glycolysis, into fructose-6-phosphate (glycolysis intermediate). Its expression in transformed cells allows them to grow on mannose-selective medium. The Agrobacterium tumefaciens strain GV3101 (pGV2260) harbouring the binary vector pNOV2819 that carries the pmi gene under the control of the Cestrum yellow leaf curling virus constitutive promoter was used for transformation experiments. Transgenic flax plants able to root on mannose-containing medium were obtained from hypocotyl-derived calli that had been selected on a combination of 20 g L−1 sucrose and 10 g L−1 mannose. Their transgenic state was confirmed by PCR and Southern blotting. Transgene expression was detected by RT-PCR in leaves, stems and roots of in vitro grown primary transformants. The mean transformation efficiency of 3.6%, that reached 6.4% in one experiment was comparable to that obtained when using the nptII selectable marker on the same cultivar. The ability of T1 seeds to germinate on mannose-containing medium confirmed the Mendelian inheritance of the pmi gene in the progeny of primary transformants. These results indicate that the PMI/mannose selection system can be successfully used for the recovery of flax transgenic plants under safe conditions for human health and the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号