首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A novel relaxin sensitive cell line of apparent smooth muscle origin has been established from a newborn rhesus monkey uterus (NRMU). NRMU cells respond to relaxin, in the presence of 1 μM forskolin, by producing intracellular adenosine 3′, 5′-cyclic monophosphate (cAMP). The increase in cAMP levels is dose, time and cell density dependent, reaching peak levels at 10 min when cells are seeded at 1×105 cells/well. Specificity was demonstrated by neutralization of the relaxin activity with anti-relaxin monoclonal and polyclonal antibodies, degradation of cAMP in the presence of phosphodiesterase, and confirmation of the absence of cGMP. Three synthetic analogs of human relaxin generated a dose-related cAMP response as did synthetic native human relaxin. Natural relaxin purified from human corpora lutea tissue also generated a response similar to synthetic human relaxin. Porcine and rat relaxins also increased levels of cAMP. Insulin, but not IGF I or IGF II, was capable of increasing cAMP levels in NRMU cells, however, 200 ng/mL were required to achieve cAMP levels comparable to 6.25 ng/ml relaxin. Combinations of relaxin with insulin, IGF I or IGF II did not increase cAMP levels above levels obtained with relaxin alone. The effect on NRMU cells of other hormones, growth factors and drugs potentially present in cell culture systems or serum samples was evaluated. In combination with relaxin, oxytocin significantly decreased the cAMP production below the levels induced by relaxin alone, whereas progesterone and prostaglandin E2 resulted in additive increases in cAMP. These data suggest that the NRMU cell line is an appropriate target tissue for studying relaxin-mediated biological responsesin vitro as well as functioning as the primary component of a relaxinin vitro bioassay. Editor's statement This paper details a smooth muscle cell line that is responsive to relaxin and provides a useful assay system for the hormone, as well as providing a model system for the study of the mechanisms of relaxin action.  相似文献   

2.
Biochemical studies suggest that G‐protein‐coupled receptors (GPCRs) achieve exquisite signalling specificity by forming selective complexes, termed signalosomes. Here, using cAMP biosensors in single cells, we uncover a pre‐assembled, constitutively active GPCR signalosome, that couples the relaxin receptor, relaxin family peptide receptor 1 (RXFP1), to cAMP following receptor stimulation with sub‐picomolar concentrations of peptide. The physiological effects of relaxin, a pleiotropic hormone with therapeutic potential in cancer metastasis and heart failure, are generally attributed to local production of the peptide, that occur in response to sub‐micromolar concentrations. The highly sensitive signalosome identified here provides a regulatory mechanism for the extremely low levels of relaxin that circulate. The signalosome includes requisite Gαs, Gβγ and adenylyl cyclase 2 (AC2); AC2 is functionally coupled to RXFP1 through AKAP79 binding to helix 8 of the receptor; activation of AC2 is tonically opposed by protein kinase A (PKA)‐activated PDE4D3, scaffolded through a β‐arrestin 2 interaction with Ser704 of the receptor C‐terminus. This elaborate, pre‐assembled, ligand‐independent GPCR signalosome represents a new paradigm in GPCR signalling and provides a mechanism for the distal actions of low circulating levels of relaxin.  相似文献   

3.
Insulin-like peptide 5 (INSL5) is a two-chain, three-disulfide bonded member of insulin/relaxin superfamily of peptides that includes insulin, insulin-like growth factor I and II (IGFI and IGFII), insulin-like peptide 3, 4, 5 and 6 (INSL3, 4, 5 and 6), relaxin-1 (H1 relaxin), -2 (H2 relaxin) and -3 (H3 relaxin). Although it is expressed in relatively high levels in the gut, its biological function remains unclear. However, recent reports suggest a significant orexigenic action and a role in the regulation of insulin secretion and β-cell homeostasis, which implies that both agonists and antagonists of the peptide may have significant therapeutic applications. Modern solid phase synthesis techniques together with regioselective disulfide bond formation were employed for a preliminary structure–function relationship study of mouse INSL5. Two point mutated analogues, mouse INSL5 A-B(R24A, W25A) and mouse INSL5 A-B(K6A, R14A, Y18A) were chemically prepared, where the residues in the B-chain that may be involved in receptor activation and affinity binding, were respectively mutated. Synthetic mouse INSL5 A-B(R24A, W25A) analogue was inactive on RXFP4, the native receptor for INSL5, suggesting ArgB24 and TrpB25 are probably directly involved in INSL5 receptor activation. Mouse INSL5 A-B(K6A, R14A, Y18A) analogue had both decreased affinity and potency on RXFP4 (pIC50 7.7 ± 0.2, pEC50 7.87 ± 0.18) which indicated that one or more of these residues are critical for the binding to the receptor.  相似文献   

4.
In connection with our discovery of the adenylyl cyclase signaling mechanism (ACSM) of action of some peptides belonging to the insulin superfamily, a possibility of its involvement in action of another insulin superfamily peptide, relaxin, was studied. It was shown for the first time that human relaxin-2 (10–12–10–8 M) activated adenylyl cyclase (AC) in a dose-dependent manner. The maximal peptide effect was revealed at a concentration of 10–8 M. Under condition of the hormonal action the basal enzyme activity increased by +310% in human myometrium, by +117%, in rat skeletal muscles, and by +49%, in foot smooth muscles of the bivalve mollusc Anodonta cygnea. Insulin and mammalian insulin-like growth factor-I (IGF-I) also produced the AC activating effect in these muscles. The order of efficiency of these peptides, based on their ability to induce the maximal AC stimulating effect, was as follows: relaxin > IGF-I > insulin (human myometrium); IGF-I > relaxin > insulin (rat skeletal muscle); insulin-like peptide of Anodonta (ILPA) > IGF-I > insulin > relaxin (molluscan muscle). The relaxin activating effect on AC was potentiated by a guanine nucleotide, the non-hydrolyzed analog of GTP, guanylylimidodiphosphate (Gpp[NH]p), which indicates participation of Gs-protein in realization of this effect. This effect was inhibited by a tyrosine kinase selective blocker, tyrphostin 47, and a phosphatidylinositol-3-kinase (PI-3-K) selective blocker, wortmannin. Thus, for the first time, participation of ACSM in the relaxin action has been established. This mechanism, as suggested at the present time state of its study, includes the following signal pathway: receptor-tyrosine kinase PI-3-K Gs-protein AC.  相似文献   

5.
The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10?9 M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10?9 M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women with gestational diabetes and subjected to insulin therapy the stimulating effect of relaxin on the enzyme activities increased. This fact suggests that relaxin exhibits replacement functions under conditions of attenuated insulin action.  相似文献   

6.
Concentrations of relaxin, prolactin, unchromatographed estradiol 17β (E) and progesterone (P4) were measured in serial samples of inferior vena caval blood, in three pigs, during late pregnancy, and parturition. Maximal relaxin concentrations occurred 60 to 24h before parturition, and ranged from 60 to 286ng/ml. Prolactin concentrations increased from 12.5ng/ml, 48 to 36 hours before parturition, to between 79 to 184ng/ml. At the time of the relaxin surge, E levels were high, and P4 concentrations were decreasing, thus raising the EP4 ratio. A surge in prolactin concentrations followed upon a decline of P4 to less than 10ng/ml, coinciding with the increase in relaxin concentrations in 2 gilts, and following the surge in relaxin in the third. Udder development occurred near the time of increased relaxin concentrations. ‘Milk let down’ followed maximal relaxin and prolactin concentrations in two gilts, and the increase in prolactin, rather than the increase in relaxin concentration, in the third.  相似文献   

7.
This study examines the possibility of a feedback interaction between gonadal relaxin and the pituitary by investigating the impact of exogenous relaxin and ablation of endogenous with relaxin anti-relaxin serum on pituitary hormone secretion in vitro. Three wells were assigned to treatments: 0, 100 and 1000 ng ml−1 of relaxin, 1:100, 1:1000 and 1:10000 titer of anti-relaxin. Relaxin significantly enhanced prolactin (PRL) secretion (P < 0.05) in long-term culture but had no effect on luteinizing hormone and follicle stimulating hormone secretion. Relaxin anti-serum stimulated a dose dependent increase (P < 0.05) in gonadotropin secretion at 48, 72 and 96 h. Luteinizing hormone and follicle stimulating hormone increased two-fold in 48 h cultures in response to 1:100 anti-relaxin serum in comparison with untreated controls. Anti-relaxin serum at 1:100 completely suppressed PRL secretion after either 48, 72, and 96 h of culture. At 48 h all levels of anti-relaxin serum completely suppressed PRL secretion. These results indicate that endogenous relaxin may be involved at the adenohypophysial level in modulating gonadotropin and PRL release in the pig.  相似文献   

8.
Relaxin, a peptide hormone produced only by the corpus luteum of pregnancy, can be used as a marker of luteal function in human pregnancy. Serum immunoreactive relaxin levels were measured serially in six women having second trimester abortions induced with intravaginal prostaglandin E2 (PGE2) suppositories. All patients aborted within 17 hours of the first suppository. No significant changes were detectable in serum relaxin levels in any of the patients. It is concluded that PGE2 does not interfere with the corpus luteum's ability to secrete relaxin in the second trimester of human pregnancy.  相似文献   

9.
The regulatory effect of peptides of the insulin superfamily—insulin, insulin-like growth factor (IGF-1), and relaxin, as well as of epidermal growth factor (EGF) on activity of glycogen synthase (GS) in rat skeletal muscles was studied in normal state and in experimental diabetes mellitus types 1 and 2 (DM1, DM2). Normally, the peptides stimulated GS activity to the maximum at a concentration of 10−8 M in vitro. The efficiency ranking of the peptide action was as follows: insulin > IGF-1 > relaxin. In DM1 the basal GS activity did not change, while the effect of insulin in vitro decreased more sharply on the 30th day of diabetes as compared to IGF-1 and relaxin, i.e. the efficiency ranking was as follows: IGF-1 = relaxin > insulin. Administration of insulin in vivo did not recover the sensitivity of the enzyme to the action of the hormone in DM1. In DM2, GS activity (both in total and in the active form) decreased while the stimulatory effect of the peptides and EGF on the enzyme was absent. Insulin administered in vivo did not lead to the recovery of the enzyme activity. We conclude that it is insulin resistance pronounced in DM2 that mostly affects the basal GS activity as well as the enzyme regulation by peptides of insulin type and EGF in rat skeletal muscles, while insulin deficiency in DM1 is of lesser importance.  相似文献   

10.
Relaxin immunological activity has been observed in the plasma of pregnant bitches, and preliminary studies in our laboratory indicated that the highest relaxin concentrations were found in placentas. Therefore, canine placentas were collected at term and also from spay and relaxin was purified by methods developed for equine relaxin. Tissue was prepared by homogenization and purification on a C18 column. The preparation was further purified by stepwise elution ion-exchange chromatography, gel filtration, and gradient elution ion-exchange chromatography. One predominant peak in relaxin immunoactivity was collected. Canine relaxin was found to be larger than either porcine or equine relaxin as determined by SDS-PAGE. It migrated faster under reducing conditions, indicating a subunit structure. Purified canine relaxin was used for tracer and standard in a canine radioimmunoassay (RIA) using an antiporcine relaxin antibody. Concentrations of relaxin immunoactivity using the canine assay were up to 300-fold higher in placental preparations than those measured in the porcine relaxin assay. Sequence analysis of canine relaxin revealed a structure similar to other relaxins in the presence and placement of cystine residues.  相似文献   

11.
The peptide hormone relaxin has striking effects on the vascular system. Specifically, endogenous relaxin treatment reduces myogenic reactivity through nitric oxide (NO)-mediated vasorelaxation and increases arterial compliance in small resistance arteries. However, less is known about the vascular roles of endogenous relaxin, particularly in males. Therefore, we used male wild-type (Rln +/+) and relaxin knockout (Rln −/−) mice to test the hypothesis that passive wall properties and vascular reactivity in mesenteric arteries would be compromised in Rln −/− mice. Passive compliance was determined in arteries (n = 8–9) mounted on a pressure myograph and in Ca2+-free Krebs containing 2 mM EGTA. Passive volume compliance was significantly (P = 0.01) decreased in the mesenteric arteries of Rln −/− mice. Vascular reactivity was assessed using wire myography. In mesenteric arteries (n = 5) of Rln −/− mice, there was a significant (P<0.03) increase in sensitivity to the vasoconstrictors phenylephrine and thromboxane-mimetic U41669. This enhanced responsiveness to vasoconstrictors was abolished by endothelial denudation, and attributed to impaired NO and prostanoid pathways in Rln −/− mice. Sensitivity to the endothelial agonist acetylcholine was significantly (n = 7–9, P≤0.03) decreased, and this was abolished in the presence of the cyclooxygenase inhibitor, indomethacin (2 µM). This indicates that prostanoid vasoconstrictor pathways were upregulated in the mesenteric arteries of Rln −/− mice. In summary, we demonstrate endothelial dysfunction and impaired arterial wall remodeling in male mice deficient in relaxin. Thus, our results highlight a role for endogenous relaxin in the maintenance of normal mesenteric artery structure and function in males.  相似文献   

12.
Sphingolipids are key lipid regulators of cell viability: ceramide is one of the key molecules in inducing programmed cell death (apoptosis), whereas other sphingolipids, such as ceramide 1-phosphate, are mitogenic. The thermotropic and structural behavior of binary systems of N-hexadecanoyl-D-erythro-ceramide (C16-ceramide) or N-hexadecanoyl-D-erythro-ceramide-1-phosphate (C16-ceramide-1-phosphate; C16-C1P) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with DSC and deuterium nuclear magnetic resonance (2H-NMR). Partial-phase diagrams (up to a mole fraction of sphingolipids X = 0.40) for both mixtures were constructed based on DSC and 2H-NMR observations. For C16-ceramide-containing bilayers DSC heating scans showed already at Xcer = 0.025 a complex structure of the main-phase transition peak suggestive of lateral-phase separation. The transition width increased significantly upon increasing Xcer, and the upper-phase boundary temperature of the mixture shifted to ∼65°C at Xcer = 0.40. The temperature range over which 2H-NMR spectra of C16-ceramide/DPPC-d62 mixtures displayed coexistence of gel and liquid crystalline domains increased from ∼10° for Xcer = 0.1 to ∼21° for Xcer = 0.4. For C16-C1P/DPPC mixtures, DSC and 2H-NMR observations indicated that two-phase coexistence was limited to significantly narrower temperature ranges for corresponding C1P concentrations. To complement these findings, C16-ceramide/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and C16-C1P/POPC mixtures were also studied by 2H-NMR and fluorescence techniques. These observations indicate that DPPC and POPC bilayers are significantly less perturbed by C16-C1P than by C16-ceramide and that C16-C1P is miscible within DPPC bilayers at least up to XC1P = 0.30.  相似文献   

13.
The pervasive use of refined sugars in highly accessible, palatable foods and persistent exposure to reinforcing food‐associated cues has contributed to overconsumption of sugar‐rich diets and the current obesity epidemic in Western society. We have shown previously that brain relaxin‐3 mRNA levels positively correlate with sucrose and alcohol intake, and that central antagonism of relaxin‐3 receptors (RXFP3) attenuates alcohol self‐administration and alcohol‐seeking in rats, but food‐seeking behaviour and palatable food consumption in mice. To further examine the relationship between motivated appetitive behaviours and relaxin‐3/RXFP3 signalling, we investigated the effect of Rxfp3 gene deletion in C57BL/6J mice on sucrose and alcohol self‐administration and cue‐induced reinstatement (RNST) of sucrose‐ and alcohol‐seeking. Acquisition and maintenance of sucrose and alcohol self‐administration was assessed in male wild‐type (WT) and Rxfp3 knockout (KO) (C57BL/6JRXFP3TM1/DGen) littermate mice using fixed ratio (FR) schedules of reinforcement. Mice were subsequently challenged with a progressive ratio (PR) test to measure motivation and, following extinction training, re‐exposed to reward‐associated cues to evaluate RNST of active lever‐responding. Wild‐type and Rxfp3 KO mice displayed similar acquisition of FR1 sucrose self‐administration, but Rxfp3 KO mice responded less when the instrumental requirement was increased to FR3. These mice also showed a lower breakpoint for sucrose and attenuated cue‐induced RNST of sucrose‐seeking. Notably, no marked genotype differences in alcohol‐responding were observed. In mice, endogenous relaxin‐3/RXFP3 signalling promotes self‐administration of sucrose under high response requirements and cue‐induced RNST of sucrose‐seeking, but does not apparently regulate motivation to consume alcohol or alcohol‐seeking behaviour.  相似文献   

14.
Abstract

Melanin‐concentrating hormone (MCH) is a neuropeptide occurring in all vertebrates and some invertebrates and is now known to stimulate pigment aggregation in teleost melanophores and food‐intake in mammals. Whereas the two MCH receptor subtypes hitherto cloned, MCH‐R1 and MCH‐R2, are thought to mediate mainly the central effects of MCH, the MCH‐R on pigment cells has not yet been identified, although in some studies MCH‐R1 was reported to be expressed by human melanocytes and melanoma cells. Here we present data of a structure‐activity study in which 12 MCH peptides were tested on rat MCH‐R1 and mouse B16 melanoma cell MCH‐R, by comparing receptor binding affinities and biological activities. For receptor binding analysis with HEK‐293 cells expressing rat MCH‐R1 (SLC‐1), the radioligand was [125I]–[Tyr13]‐MCH with the natural sequence. For B16 cells (F1 and G4F sublines) expressing B16 MCH‐R, the analog [125I]–[D‐Phe13, Tyr19]‐MCH served as radioligand. The bioassay used for MCH‐R1 was intracellular Ca2+ mobilization quantified with the FLIPR instrument, whereas for B16 MCH‐R the signal determined was MAP kinase activation. Our data show that some of the peptides displayed a similar relative increase or decrase of potency in both cell types tested. For example, linear MCH with Ser residues at positions 7 and 16 was almost inactive whereas a slight increase in side‐chain hydrophilicity at residues 4 and 8, or truncation of MCH at the N‐terminus by two residues hardly changed binding affinity or bioactivity. On the other hand, salmonic MCH which also lacks the first two residues of the mammalian sequence but in addition has different residues at positions 4, 5, 9, and 18 exhibited a 5‐ to 10‐fold lower binding activity than MCH in both cell systems. A striking difference in ligand recognition between MCH‐R1 and B16 MCH‐R was however observed with modifications at position 13 of MCH: whereas L‐Phe13 in [Phe13, Tyr19]‐MCH was well tolerated by both MCH‐R1 and B16 MCH‐R, change of configuration to D‐Phe13 in [D‐Phe13, Tyr19]‐MCH or [D‐Phe13]‐MCH led to a complete loss of biological activity and to a 5‐ to 10‐fold lower binding activity with MCH‐R1. By contrast, the D‐Phe13 residue increased the affinity of [D‐Phe13, Tyr19]‐MCH to B16 MCH‐R about 10‐fold and elicited MAP kinase activation as observed with [Phe13, Tyr19]‐MCH or MCH. These data demonstrate that ligand recognition by B16 MCH‐R differs from that of MCH‐R1 in several respects, indicating that the B16 MCH‐R represents an MCH‐R subtype different from MCH‐R1.  相似文献   

15.
Previous studies have identified the heart as a source and a target tissue for oxytocin and relaxin hormones. These hormones play important roles in the regulation of cardiovascular function and repair of ischemic heart injury. In the current study, we examined the impact of oxytocin and relaxin on the development of cardiomyocytes from mesenchymal stem cells. For this purpose, mouse adipose tissue–derived stem cells (ADSCs) were treated with different concentrations of oxytocin or relaxin for 4 days. Three weeks after initiation of cardiac induction, differentiated ADSCs expressed cardiac-specific genes, Gata4, Mef2c, Nkx2.5, Tbx5, α- and β-Mhc, Mlc2v, Mlc2a and Anp, and cardiac proteins including connexin 43, desmin and α-actinin. 10 −7 M oxytocin and 50 ng/mL relaxin induced the maximum upregulation in the expression of cardiac markers. A combination of oxytocin and relaxin induced cardiomyocyte differentiation more potently than the individual factors. In our experiment, oxytocin-relaxin combination increased the population of cardiac troponin I-expressing cells to 6.84% as compared with 2.36% for the untreated ADSCs, 3.7% for oxytocin treatment and 3.41% for relaxin treatment groups. In summary, the results of this study indicated that oxytocin and relaxin hormones individually and in combination can improve cardiac differentiation of ADSCs, and treatment of the ADSCs and possibly other mesenchymal stem cells with these hormones may enhance their cardiogenic differentiation and survival after transplantation into the ischemic heart tissue.  相似文献   

16.
β-Carotene 15–15′-oxygenase (BCO1) catalyzes the oxidative cleavage of dietary provitamin A carotenoids to retinal (vitamin A aldehyde). Aldehydes readily exchange their carbonyl oxygen with water, making oxygen labeling experiments challenging. BCO1 has been thought to be a monooxygenase, incorporating oxygen from O2 and H2O into its cleavage products. This was based on a study that used conditions that favored oxygen exchange with water. We incubated purified recombinant human BCO1 and β-carotene in either 16O2-H218O or 18O2-H216O medium for 15 min at 37 °C, and the relative amounts of 18O-retinal and 16O-retinal were measured by liquid chromatography-tandem mass spectrometry. At least 79% of the retinal produced by the reaction has the same oxygen isotope as the O2 gas used. Together with the data from 18O-retinal-H216O and 16O-retinal-H218O incubations to account for nonenzymatic oxygen exchange, our results show that BCO1 incorporates only oxygen from O2 into retinal. Thus, BCO1 is a dioxygenase.  相似文献   

17.
Using enthalphy data from differential scanning calorimetry experiments and 13C-NMR linewidths of specifically (N-Me-13C)-labelled lipids, the miscibility properties of phosphatidylcholines and lysophosphatidylcholines in liposomal dispersions have been investigated. It was found that 16 : 0 lysophosphatidylcholine mixes homogeneously in 16 : 0/16 : 0 phosphatidylcholine bilayers. Mixtures of 16 : 0 lysophosphatidylcholine with 18 : 1c/18 : 1c phosphatidylcholine, of 18 : 1c lysophosphatidylcholine with 16 : 0/16 : 0 phosphatidylcholine and of 18 : 1c lysophosphatidylcholine with 18 : 1c/18 : 1c phosphatidylcholine exhibited immiscibility in the phosphatidylcholine gel state.  相似文献   

18.
Paired segments of rat uterus were treated with relaxin (W1164-3, 150 GPU/mg) until the amplitude of contraction was reduced to at least 50% of the pre-treatment amplitude. Test segments then received 100 ng of either PGE1, PGE2, PGF2α or 250 uU of oxytocin. Control segments remained untreated. There was a significant increase in contraction amplitude in response to the spasmogens (P < 0.05) but no increase was seen in controls.  相似文献   

19.
The growth of Salvinia molesta D.S. Mitchell was studied in a greenhouse using controlled-temperature water-baths at 16, 19 and 22°C and 4 different nitrogen compounds (NO3?, NH4+, NH4NO3 and urea) at levels up to 60 mg N l?1. Little growth occurred at 16°C even if 20 mg N l?1 was supplied together with other nutrients including phosphorus (2 mg H2PO4-P l?1). The highest relative growth rate and total dry matter production occurred at 22°C when plants were supplied with 20 mg NH4-N l?1. At this temperature, the NH4+ ion was superior to the NO3? ion or urea as a nitrogen source (almost doubling the biomass), but was not significantly better than NH4NO3. Over a period of 19 days for plants receiving 0.02 mg NH4-N l?, biomass increased 4-fold at 16°C, 9-fold at 19°C and 10-fold at 22°C. In contrast, for plants receiving 20 mg NH4-N l?1, biomass increased 4-fold at 16°C, 18-fold at 19°C and 38-fold at 22°C.  相似文献   

20.
Members of the INK4 protein family specifically inhibit cyclin-dependent kinase 4 (cdk4) and cdk6-mediated phosphorylation of the retinoblastoma susceptibility gene product (Rb). p16INK4A, a prototypic INK4 protein, has been identified as a tumor suppressor in many human cancers. Inactivation of p16INK4A in tumors expressing wild-type Rb is thought to be required in order for many malignant cell types to enter S phase efficiently or to escape senescence. Here, we demonstrate another mechanism of tumor suppression by implicating p16INK4A in a G1 arrest checkpoint in response to DNA damage. Calu-1 non-small cell lung cancer cells, which retain Rb and lack p53, do not arrest in G1 following DNA damage. However, engineered expression of p16INK4A at levels compatible with cell proliferation restores a G1 arrest checkpoint in response to treatment with γ-irradiation, topoisomerase I and II inhibitors, and cisplatin. A similar checkpoint can be demonstrated in p53−/− fibroblasts that express p16INK4A. DNA damage-induced G1 arrest, which requires the expression of pocket proteins such as Rb, can be abrogated by overexpression of cdk4, kinase-inactive cdk4 variants capable of sequestering p16INK4A, or a cdk4 variant incapable of binding p16INK4A. After exposure to DNA-damaging agents, there was no change either in overall levels of p16INK4A or in amounts of p16INK4A found in complex with cdks 4 and 6. Nonetheless, p16INK4A expression is required for the reduction in cdk4- and cdk6-mediated Rb kinase activity observed in response to DNA damage. During tumor progression, loss of p16INK4A expression may be necessary for cells with wild-type Rb to bypass this G1 arrest checkpoint and attain a fully transformed phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号