首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial transformation of semicircular canal signals to extraocular motor signals was studied by recording abducens nerve responses in grass and water frogs. Both species have similar vestibular canal coordinates but dissimilar orientations of their optic axes. Before sinusoidal oscillation in darkness the static head position was systematically altered to determine the planes of head oscillation in pitch and roll associated with minimal abducens nerve responses. Measured data and known canal plane vectors were used to calculate the abducens response vector in canal coordinates. The abducens vector deviated from the horizontal canal plane vector in grass frogs by 15° and in water frogs by 34° but was aligned with the pulling direction of the lateral rectus muscle in each of the two species. Lesion experiments demonstrated the importance of convergent inputs from the contralateral horizontal and anterior semicircular canals for the orientation of the abducens response vector. Thus, the orientation of the optic axis and the pulling directions of extraocular muscles are taken into account by the central organization of vestibulo-ocular reflexes. Horizontal and vertical canal signals are combined species-specifically to transform the spatial coordinates of sensory signals into appropriate extraocular motor signals. Accepted: 16 November 1997  相似文献   

2.
The semicircular canals of the labyrinth of vertebrates provide one way of motion detection in three-dimensional space. The fully developed form of the vertebrate labyrinth consists of six semicircular canals, three on each side of the head, whose spatial arrangement (vertical canals are placed diagonally in the head, horizontal canals are oriented earth horizontally) follows three interconnected principles: 1) bilateral symmetry, 2) push-pull operational mode, and 3) mutual orthogonality. Other sensory and motor systems related to vestibular reflexes, such as the extraocular muscles or the "optokinetic" coordinate axes encoded in the activity of the visually driven cells of the accessory optic system, share the same geometrical framework. This framework is also reflected in the anatomical networks mediating compensatory eye movements, linking each of the semicircular canals to a particular set of extraocular muscles (so-called principal vestibuloocular reflex connections to yoke muscles). These classical vestibulo-oculomotor relationships have been verified at many levels of the vertebrate hierarchy, including lateral- and frontal-eyed animals. The particular spatial orientation of the semicircular canals requires further comment and phylogenetic evaluation. The spatial arrangement of the vertical canals is already present in fossil ostracoderms, and is also exemplified in lampreys, the modern forms of once abundant agnathan species that populated the Silurian and Devonian oceans. The lampreys and ostracoderms lack horizontal canals, which appear later in all descendent vertebrates. The fully developed vertebrate labyrinth with its six semicircular canals displays distinct differences that are obvious when comparing distant taxa (e.g. elasmobranchs versus other vertebrates). Whereas the common crus of the semicircular canals in teleosts through mammals is formed between the anterior and the posterior semicircular canal, it occurs between the anterior and the horizontal canal in elasmobranchs. However, despite this morphological difference, these two vertebrate labyrinth prototypes constitute a functionally identical solution. A similar analysis holds for certain invertebrate species (crab, octopus, squid), which display an even wider variety in the physical expressions of movement detection systems when compared to vertebrates. Although the physical expressions of motion detection systems differ in the animal kingdom, the functional solutions (providing the best signal-to-noise ratio) with adherence to bilateral symmetry, push-pull operational mode, and mutual orthogonality are identical.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Alignment of the body to the gravitational vertical is considered to be the key to human bipedalism. However, changes to the semicircular canals during human evolution suggest that the sense of head rotation that they provide is important for modern human bipedal locomotion. When walking, the canals signal a mix of head rotations associated with path turns, balance perturbations, and other body movements. It is uncertain how the brain uses this information. Here, we show dual roles for the semicircular canals in balance control and navigation control. We electrically evoke a head-fixed virtual rotation signal from semicircular canal nerves as subjects walk in the dark with their head held in different orientations. Depending on head orientation, we can either steer walking by "remote control" or produce balance disturbances. This shows that the brain resolves the canal signal according to head posture into Earth-referenced orthogonal components and uses rotations in vertical planes to control balance and rotations in the horizontal plane to navigate. Because the semicircular canals are concerned with movement rather than detecting vertical alignment, this result shows the importance of movement control and agility rather than precise vertical alignment of the body for human bipedalism.  相似文献   

4.
Vertebrates use the vestibulo-ocular reflex to maintain clear vision during head movements. This reflex requires eye-velocity commands from the semicircular canals to be integrated (mathematically) to produce eye-position commands for the extraocular muscles. This is accomplished by a neural network in the caudal pons. A model of this network is proposed using positive feedback via lateral inhibition. The model has been adapted to a learning network. We have developed a synaptic learning rule using only local information to make the model more physiological.  相似文献   

5.
The vestibulo-ocular reflex (VOR) produces compensatory eye movements by utilizing head rotational velocity signals from the semicircular canals to control contractions of the extraocular muscles. In mammals, the time course of horizontal VOR is longer than that of the canal signals driving it, revealing the presence of a central integrator known as velocity storage. Although the neurons mediating VOR have been described neurophysiologically, their properties, and the mechanism of velocity storage itself, remain unexplained. Recent models of integration in VOR are based on systems of linear elements, interconnected in arbitrary ways. The present study extends this work by modeling horizontal VOR as a learning network composed of nonlinear model neurons. Network architectures are based on the VOR arc (canal afferents, vestibular nucleus (VN) neurons and extraocular motoneurons) and have both forward and lateral connections. The networks learn to produce velocity storage integration by forming lateral (commissural) inhibitory feedback loops between VN neurons. These loops overlap and interact in a complex way, forming both fast and slow VN pathways. The networks exhibit some of the nonlinear properties of the actual VOR, such as dependency of decay rate and phase lag upon input magnitude, and skewing of the response to higher magnitude sinusoidal inputs. Model VN neurons resemble their real counterparts. Both have increased time constant and gain, and decreased spontaneous rate as compared to canal afferents. Also, both model and real VN neurons exhibit rectification and skew. The results suggest that lateral inhibitory interactions produce velocity storage and also determine the properties of neurons mediating VOR. The neural network models demonstrate how commissural inhibition may be organized along the VOR pathway.  相似文献   

6.
Studies have reported an empirical link between the size of the semicircular canals and locomotor agility across adult primates. In this paper, we investigate the possibility that this relationship does not follow from the function of the semicircular canals to sense head rotations, but rather reflects spatial constraints imposed by the subarcuate fossa. The latter sits among the three canals and contains the petrosal lobule of the cerebellar paraflocculus, a structure involved in neural processing of locomotion-related eye movements. Hence, it is feasible that agility-related variations of lobule and fossa size affect the arc size of the surrounding semicircular canals. The present study tests such hypothetical correlations by evaluating canal size, fossa size, and agility among extant adult primates. Phylogenetically informed multivariate regression analyses show that, after controlling for body mass, the size of the subarcuate fossa has a significant positive effect on the overall size of the anterior canal and the width of the posterior canal. Multivariate regressions involving the height of the posterior canal and overall size of the lateral canal are not significant. Further bivariate analyses confirm that fossa size is unlikely to play a role in the previously reported link between agility and the size of the posterior and lateral canals. However, fossa size, especially its opening though the arc of the anterior canal, cannot be excluded as a factor that influences the size of the anterior canal more than agility. The findings show that the most reliable functional signals pertaining to locomotion in species that possess a patent subarcuate fossa are likely to come from the lateral canal and are least likely to come from the anterior canal.  相似文献   

7.
The knowledge of intraspecific variation is important to make assumptions on an interspecific level. To study intraspecific variation in the bony labyrinth morphology of the domestic cat, eleven specimens of Felis silvestris catus and two additional subspecies (F. s. lybica, F. s. ornata) were investigated. The sample comprises skulls of adult males and females, as well as juvenile cats. Each bony labyrinth endocast was virtually reconstructed based on µCT scans. To estimate the radius of curvature of each inner ear semicircular canal, three different approaches were tested. The comparison of the different methods resulted in different absolute values for the measured radii. The assumed best structure to precisely characterize the size of a semicircular canal is the inner perimeter. Within the tested sample, the anterior semicircular canal is always the largest, while the posterior semicircular canal is the second largest and the lateral semicircular canal the smallest in most cases. The coefficient of variation lies below 10% for all bony labyrinth measurements within the sample. The inner perimeter values of each semicircular canal are similar within all investigated specimens, even though the skull length of adult cats is twice as long as that of juvenile cats. Thus, inner ear biometry of the domestic cat seems stable throughout growth series and can therefore be used for systematic and ecological studies and the inclusion of juvenile individuals is reasonable. It is noteworthy that the inner perimeter values of the semicircular canals do not vary as much as the values of the angles spanned between the three canals within the sample. The inner ear within the cat skull is oriented about 25° to 31° to the palate (angle between the plane anchored to the lateral semicircular canals (SC) and the plane anchored to the palate). The cochlea coils between 3.00 and 3.25 turns in the investigated sample.  相似文献   

8.
This paper presents a comprehensive comparative analysis of the Neanderthal bony labyrinth, a structure located inside the petrous temporal bone. Fifteen Neanderthal specimens are compared with a Holocene human sample, as well as with a small number of European Middle Pleistocene hominins, and early anatomically modern and European Upper Palaeolithic humans. Compared with Holocene humans the bony labyrinth of Neanderthals can be characterized by an anterior semicircular canal arc which is smaller in absolute and relative size, is relatively narrow, and shows more torsion. The posterior semicircular canal arc is smaller in absolute and relative size as well, it is more circular in shape, and is positioned more inferiorly relative to the lateral canal plane. The lateral semicircular canal arc is absolutely and relatively larger. Finally, the Neanderthal ampullar line is more vertically inclined relative to the planar orientation of the lateral canal. The European Upper Palaeolithic and early modern humans are most similar, although not fully identical to Holocene humans in labyrinthine morphology. The European Middle Pleistocene hominins show the typical semicircular canal morphology of Neanderthals, with the exception of the arc shape and inferiorly position of the posterior canal and the strongly inclined ampullar line. The marked difference between the labyrinths of Neanderthals and modern humans can be used to assess the phylogenetic affinities of fragmentary temporal bone fossils. However, this application is limited by a degree of overlap between the morphologies. The typical shape of the Neanderthal labyrinth appears to mirror aspects of the surrounding petrous pyramid, and both may follow from the phylogenetic impact of Neanderthal brain morphology moulding the shape of the posterior cranial fossa. The functionally important arc sizes of the Neanderthal semicircular canals may reflect a pattern of head movements different from that of modern humans, possibly related to aspects of locomotor behaviour and the kinematic properties of their head and neck.  相似文献   

9.
10.
The morphogenetic development of the mammalian inner ear is a complex multistep process, the molecular and cellular details of which are only beginning to be unraveled. We show here that mouse netrin 1, known to be involved in axon guidance and cell migration in the central nervous system, also plays a critical morphogenetic role during semicircular canal formation. netrin 1 is expressed at high levels in the otic epithelium, in cells that will come together to form a fusion plate, a prerequisite for the formation of semicircular canals. In netrin 1 mutant mice, fusion plate formation is severely affected resulting in a reduced anterior semicircular canal and the complete lack of the posterior and lateral canals. Our results suggest that netrin 1 facilitates semicircular canal formation through two different mechanisms: (1) it participates in the detachment of the fusion plate epithelia from the basement membrane, and (2) it stimulates proliferation of the periotic mesenchymal cells which then push the epithelial cell walls together to form the fusion plate.  相似文献   

11.
Healthy teens and adults performed four vagotonic maneuvers. A large series of strabismus surgery patients had deliberately quantified tension on extraocular rectus muscles during general anesthesia. The mean bradycardia was greatest for diving response (apneic facial exposure to cold) and Valsalva maneuver and least for pressure on the globe and carotid sinus massage. Bradycardia occurred for every subject for the non-surgical maneuvers, however, extraocular muscle tension frequently caused no change in heart rate or even tachycardia. The inter-subject variance in percent heart rate change was greatest for surgical oculocardiac reflex. Of the rectus muscles, the inferior caused the most bradycardia while the lateral caused the least. The percent oculocardiac reflex was not age dependent. Occasional patients demonstrated profound bradycardia with strabismus surgery. Of these maneuvers, diving response has theoretical advantage in treating paroxysmal atrial tachycardia. The human cardiac vagal efferent was stimulated by several carefully controlled maneuvers resulting in wide inter-maneuver differences in bradycardia magnitude. The greatest intra-maneuver variability occurred with surgical oculocardiac reflex.  相似文献   

12.
Extraocular muscle motoneurones were localised in the oculomotor nucleus (ON), trochlear nucleus (TN) and abducens nucleus (AN) in the marmoset brain using the horseradish peroxidase (HRP) retrograde labelling technique. HRP pellets injected into individual extraocular muscles revealed one or more groups of labelled neurones occupying discrete loci within these nuclei. Relatively little overlap of motoneurone pools was observed, except in the case of the inferior oblique and superior rectus muscles. Injections of HRP into the medial rectus muscle revealed three separate populations of labelled cells in the ipsilateral ON. Motoneurones innervating the inferior rectus muscle were mainly localised in the lateral somatic cell column of the ipsilateral ON. A second smaller grouping was observed in the medial longitudinal fasciculus. The inferior oblique muscle motoneurones were localised in the ipsilateral medial somatic cell column intermingled with motoneurones supplying the superior rectus muscle of the opposite eye. The superior oblique muscle motoneurones occupied the entire TN and the lateral rectus muscle motoneurones the AN. It was concluded that the organisation of nuclei and subnuclei responsible for controlling the extraocular muscles in the marmoset is broadly similar to that of other primates.  相似文献   

13.
The vestibulo-ocular reflex (VOR) is capable of producing compensatory eye movements in three dimensions. It utilizes the head rotational velocity signals from the semicircular canals to control the contractions of the extraocular muscles. Since canal and muscle coordinate frames are not orthogonal and differ from one another, a sensorimotor transformation must be produced by the VOR neural network. Tensor theory has been used to construct a linear transformation that can model the three-dimensional behavior of the VOR. But tensor theory does not take the distributed, redundant nature of the VOR neural network into account. It suggests that the neurons subserving the VOR, such as vestibular nucleus neurons, should have specific sensitivity-vectors. Actual data, however, are not in accord. Data from the cat show that the sensitivity-vectors of vestibular nucleus neurons, rather than aligning with any specific vectors, are dispersed widely. As an alternative to tensor theory, we modeled the vertical VOR as a three-layered neural network programmed using the back-propagation learning algorithm. Units in mature networks had divergent sensitivity-vectors which resembled those of actual vestibular nucleus neurons in the cat. This similarity suggests that the VOR sensorimotor transformation may be represented redundantly rather than uniquely. The results demonstrate how vestibular nucleus neurons can encode the VOR sensorimotor transformation in a distributed manner.  相似文献   

14.
《Journal of morphology》2017,278(5):704-717
The orientation of the semicircular canals of the inner ear in the skull of vertebrates is one of the determinants of the capacity of this system to detect a given rotational movement of the head. Past functional studies on the spatial orientation of the semicircular canals essentially focused on the lateral semicircular canal (LSC), which is supposedly held close to horizontal during rest and/or alert behaviors. However, they generally investigated this feature in only a few and distantly related taxa. Based on 3D‐models reconstructed from µCT‐scans of skulls, we examined the diversity of orientations of the LSC within one of the four major clades of placental mammals, that is, the superorder Xenarthra, with a data set that includes almost all extant genera and two extinct taxa. We observed a wide diversity of LSC orientations relative to the basicranium at both intraspecific and interspecific scales. The estimated phylogenetic imprint on the orientation of the LSC was significant but rather low within the superorder, though some phylogenetic conservatism was detected for armadillos that were characterized by a strongly tilted LSC. A convergence between extant suspensory sloths was also detected, both genera showing a weakly tilted LSC. Our preliminary analysis of usual head posture in extant xenarthrans based on photographs of living animals further revealed that the LSC orientation in armadillos is congruent with a strongly nose‐down head posture. It also portrayed a more complex situation for sloths and anteaters. Finally, we also demonstrate that the conformation of the cranial vault and nuchal crests as well as the orientation of the posterior part of the petrosal may covary with the LSC orientation in Xenarthra. Possible inferences for the head postures of extinct xenarthrans such as giant ground sloths are discussed in the light of these results.  相似文献   

15.
Summary The influence of the efferent vestibular system being eliminated, the spontaneous activity of afferent fibres of the ampullary nerves of the horizontal and vertical anterior semicircular canals was recorded in the frog. By functionally eliminating either both papillae or all the vestibular receptors except for the papillae, and then using statistical methods, as well as by stimulating the papillae by sounds or the papillary nerve fibres by electrical stimulus, it has been shown that the auditory papillae have a facilitatory influence on the spontaneous afferent activity from the horizontal and vertical anterior canals. This influence is most likely mediated by receptor-receptor fibres arising from the auditory organs and innervating the semicircular canals.Abbreviations HC horizontal canal - VAC vertical anterior canal This research was supported by a grant from D.G.R.S.T. (Aide à la Recherche n 77.7.1127)  相似文献   

16.
Although the extraocular muscles contain stretch receptors it is generally believed that their afferents exert no influence on the control of eye movement. However, we have shown previously that these afferent signals reach various brainstem centres concerned with eye movement, notably the vestibular nuclei, and that the decerebrate pigeon is a favourable preparation in which to study their effects. If the extraocular muscle afferents do influence oculomotor control from moment-to-moment they should exert a demonstrable effect on the oculomotor nuclei. We now present evidence that extraocular muscle afferent signals do, indeed, alter the responses of units in an oculomotor nucleus (the abducens, VI nerve nucleus, which supplies the lateral rectus muscle) to horizontal, vestibular stimulation induced by sinusoidal oscillation of the bird. Such stimuli evoke a vestibulo-ocular reflex in the intact bird. The extraocular stretch receptors were activated by passive eye movement within the pigeon's saccadic range; such movements modified the vestibular responses of all 19 units studied which were all, histologically, in the abducens nucleus. The magnitude of the effects, purely inhibitory in 15 units, depended both on the amplitude and the velocity of the eye movement and most units showed selectivity for particular combinations of plane (e.g. horizontal versus vertical) and direction (e.g. rostral versus caudal) of eye movement. The results show that an afferent signal from the extraocular muscles influences vestibularly driven activity in the abducens nucleus to which it carries information related to amplitude, velocity, plane and direction of eye movement in the saccadic range. They thus strongly support the view that extraocular afferent signals are involved in the control of eye movement.  相似文献   

17.
In the vertebrate inner ear, the ability to detect angular head movements lies in the three semicircular canals and their sensory tissues, the cristae. The molecular mechanisms underlying the formation of the three canals are largely unknown. Malformations of this vestibular apparatus found in zebrafish and mice usually involve both canals and cristae. Although there are examples of mutants with only defective canals, few mutants have normal canals without some prior sensory tissue specification, suggesting that the sensory tissues, cristae, might induce the formation of their non-sensory components, the semicircular canals. We fate-mapped the vertical canal pouch in chicken that gives rise to the anterior and posterior canals, using a fluorescent, lipophilic dye (DiI), and identified a canal genesis zone adjacent to each prospective crista that corresponds to the Bone morphogenetic protein 2 (Bmp2)-positive domain in the canal pouch. Using retroviruses or beads to increase Fibroblast Growth Factors (FGFs) for gain-of-function and beads soaked with the FGF inhibitor SU5402 for loss-of-function experiments, we show that FGFs in the crista promote canal development by upregulating Bmp2. We postulate that FGFs in the cristae induce a canal genesis zone by inducing/upregulating Bmp2 expression. Ectopic FGF treatments convert some of the cells in the canal pouch from the prospective common crus to a canal-like fate. Thus, we provide the first molecular evidence whereby sensory organs direct the development of the associated non-sensory components, the semicircular canals, in vertebrate inner ears.  相似文献   

18.
The development of two of the cranial lateral line canals is described in the cichlid, Archocentrus nigrofasciatus. Four stages of canal morphogenesis are defined based on histological analysis of the supraorbital and mandibular canals. "Canal enclosure" and "canal ossification" are defined as two discrete stages in lateral line canal development, which differ in duration, an observation that has interesting implications for the ontogeny of lateral line function. Canal diameter in the vicinity of individual neuromasts begins to increase before ossification of the canal roof in each canal segment; this increase in canal diameter is accompanied by an increase in canal neuromast size. The mandibular canal generally develops later than the supraorbital canal in this species, but in both of these canals development of the different canal segments contained within a single dermal bone is asynchronous. These observations suggest that a dynamic process requiring integration and interaction among different tissues, in both space and time, underlies the development of the cranial lateral line canal system. The supraorbital and mandibular canals appear to demonstrate a "one-component" pattern of development in Archocentrus nigrofasciatus, where the walls of each canal segment grow up from the underlying dermal bone and then fuse to form the bony canal roof. This is contrary to numerous published reports that describe a "two-component" pattern of development in teleosts where the bony canal ossifies separately and then fuses with an underlying dermal bone. A survey of the literature in which lateral line canal development is described using histological analysis suggests that the occurrence of two different patterns of canal morphogenesis ("one-component" and "two-component") may be due to phylogenetic variation in the pattern of the development of the lateral line canals.  相似文献   

19.
Studies have reported a functional link between the arc size of the semicircular canals and locomotor agility across adult primates. However, canal size is spatially interlinked with the subarcuate fossa. This fossa can house the petrosal lobule of the paraflocculus, which also plays a role in coordinating head and eye movements. Consequently, it could be that it is the size of the petrosal lobule and fossa that are directly associated with locomotor agility, and not canal arc size. The apparent association of the latter would only follow from the spatial requirement of the canals to accommodate a suitably enlarged subarcuate fossa and petrosal lobule. This study aims to test the ontogenetic basis of this argument by examining high-resolution magnetic resonance images of fetal samples of Homo sapiens, Macaca nemestrina, and Alouatta caraya. Falsifiable null hypotheses examined are (1) that development of the subarcuate fossa is initiated by growth of the petrosal lobule, and (2) that growth of the semicircular canals and of the subarcuate fossa are independent. The findings confirm that the subarcuate fossa forms independently of a petrosal lobule in all three species, thereby falsifying the first hypothesis. Significant correlations were observed between size variables of the semicircular canals and the subarcuate fossa, particularly between the anterior canal and the opening of the fossa. These results falsify the hypothesis that the canals and fossa grow entirely independently. In the human sample, canal growth outpaces fossa growth, possibly because no petrosal lobule is present in humans. In the other two species, the subarcuate fossa simply seems to fill the space made available by canal growth. However, fossa enlargement cannot be excluded as an influence on size increase in the canals. Nevertheless, taken together, the results suggest that canal size is unlikely to be determined primarily by the spatial requirements of the subarcuate fossa and petrosal lobule, rather than by sensory demands reflected in the empirically established link with locomotor agility.  相似文献   

20.
Using the non-destructive technique of 3-D micro computed tomography (3-D-μCT), we present a new, virtual reconstruction of the Le Moustier 1 Neandertal skull. This new reconstruction corrects defects found in earlier reconstruction attempts by repositioning misaligned cranial fragments, addressing the problem of asymmetry caused by pressure during the fossilization process, and placing the basioccipital in its proper anatomical position. Metric comparisons between Le Moustier 1 and juvenile and adult Neandertals demonstrate that facial height proceeded at a faster rate of growth than facial prognathism at the beginning of the adolescent period. They also confirm the anterior placement of the basioccipital. A compound painted to match the colour of the fossilized bone was used in previous reconstruction attempts and the aim of this analysis was to remove the false material to reveal to what extent the fossilized bone was preserved. The areas with the most artificial material and glue include the palate, areas around the mandibular teeth, the left frontal, and parts of the right parietal and temporal bones. The μCT data were also used to examine internal structures of the skull including the frontal sinus and the labyrinth of the inner ear. An investigation of the frontal sinus reveals morphology similar to that found in adult Neandertals, although the structure does not extend to mid-orbit. The dimension of the radius of curvature of the lateral semicircular canal falls within one standard deviation, and the anterior and posterior canals within two standard deviations, of the published Neandertal mean. As in other Neandertals, the posterior semicircular canal is in an inferior position relative to the plane of the lateral canal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号