首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
本实验所用的中国红豆杉细胞悬浮培养体系中,云南紫杉烷c(Tc)是主要的次生代谢产物,该化合物有类神经生长因子活性,提高其产量是进一步规模化生产的前提。本研究考察了原位吸附和茉莉酸甲酯(MJA)联合调控提高Tc产量的可能性。在培养的第7天加入浓度为100μmol/L的MJA虽然会使细胞的生物量下降10%~30%,但是单位细胞内Tc含量和Tc产量均有显著提高,分别是对照的3.6和3.3倍。吸附剂XAD-7在不同时间加入对Tc的合成影响显著。在培养的第7天同时加入100μmol/L的MJA和100g/L的XAD-7会使细胞生物量增加,Tc产量显著提高。培养到第21天,Tc产量达477.4mg/L,为对照的6.3倍,为只加MJA的1.9倍,其中94%的Tc被树脂吸附。实验结果表明,在MJA诱导高表达的过程中,吸附剂XAD-7的加入使细胞内代谢产物外泌,浓度降低,减轻产物反馈抑制现象,从而大幅度提高代谢物产量,有较好的生产前景。  相似文献   

2.
This work aims to detect the two signal events in the elicitation of plant defense responses and secondary metabolism in plant cell cultures by low-energy ultrasound (US), transient production of reactive oxygen species (ROS) or the oxidative burst and jasmonic acid (JA) biosynthesis, and examine their influence on secondary metabolism. Experiments were carried out in Taxus chinensis cell suspension culture which produces the anticancer diterpenoid Taxol (paclitaxel). The culture was exposed to low-frequency US for a short period of time (2 min). At sufficiently high US power levels the US exposure significantly enhanced the Taxol production and slightly depressed cell growth and viability. The US exposure induced transient production of O(2)*- and H(2)O(2) and an increase in the intracellular JA level as well as the activities of enzymes for JA synthesis, lipoxygenase (LOX), and allene oxide synthase (AOS). Inhibition of the ROS production by putative ROS scavengers or the JA accumulation by LOX inhibitors effectively suppressed the US-stimulated Taxol production. Inhibition of the ROS production also suppressed the US-induced JA accumulation. These results suggest that oxidative burst is an upstream event to JA accumulation, and both ROS from the oxidative burst and JA from the LOX pathway are key signal elements in the elicitation of Taxol production of T. chinensis cells by low-energy US.  相似文献   

3.
脂氧合酶在诱导红豆杉细胞产紫杉醇中的作用   总被引:2,自引:0,他引:2  
对红豆杉悬浮培养细胞中脂氧合酶(LOX)在诱导子诱导紫杉醇合成中的作用进行了探讨。结果表明真菌诱导子处理可提高细胞内LOX的活性和紫杉醇的产量,而诱导前用LOX抑制剂菲尼酮处理,可完全抑制诱导子对LOX活性和紫杉醇合成的诱导作用。说明LOX途径可能参与了紫杉醇的合成过程。外加茉莉酸甲酯也可激活LOX活性和紫杉醇合成,诱导前用菲尼酮处理可抑制诱导子诱导的LOX活性和紫杉醇合成,说明外源茉莉酸甲酯可能是通过激活细胞内LOX途径而启动下游紫杉醇的合成。为了进一步研究脂氧合酶在紫杉醇合成中的作用。我们还对红豆杉细胞脂氧合酶的分布和分子量等性质进行了研究。  相似文献   

4.
Suspension culture of Taxus chinensis cells was carried out in aqueous-organic two-phase systems for the production and in situ solvent extraction of taxol (paclitaxel). Three organic solvents, hexadecane, decanol, and dibutylphthalate, were tested at 5-20% (v/v) in the culture liquid. All of these solvents stimulated taxol release and the yield per cell, though decanol and higher concentrations of the other two solvents depressed biomass growth significantly. Ten percent dibutylphthalate was the optimal solvent for improving taxol production and release with minimal cell growth inhibition. The time of solvent addition to the culture also affected taxol production, with the addition during the late-log growth phase being most favorable. By feeding sucrose to the culture near the stationary growth phase, the cell growth and taxol production period was extended from 27 to 42 days. The combining of the two-phase culture and sucrose feeding increased the taxol yield by about 6-fold compared with the single-phase batch culture, to 36.0 +/- 3.5 mg/L, with up to 63% taxol released. This study shows that in situ solvent extraction combined with nutrient feeding is an effective process strategy for production and recovery of secondary metabolites in plant cell suspension culture.  相似文献   

5.
Taxus cuspidata P991 in plant cell suspension culture is capable of producing the important anticancer agent Taxol (paclitaxel) and related taxanes. High-level production is obtained by elicitation with methyl jasmonate, but successful elicitation leads to loss of cell viability that cannot be recovered by subculture. Here, we test whether the loss of viability is due to a direct effect of methyl jasmonate. Upon subculture, the reduced viability continued in methyl jasmonate elicited cultures, but not in nonelicited control cultures. The growth reduction in elicited T. cuspidata P991 suspension cultures was evaluated by viability reduction measurements using phenosafranin and fluorescein diacetate. The viability reduction does not appear to be related to apoptosis based on DNA laddering analysis because it occurred very late (at day 35) in the culture period. DNA laddering was also found only after day 28 in T. canadensis C93AD (a Taxol-producing cell line) elicited with methyl jasmonate, implying that apoptosis is not the major death mechanism after elicitation. As compared to Taxol-producing cell lines, the viability of a nonproducing cell line, T. canadensis CO93D, was not severely affected by methyl jasmonate, indicating that methyl jasmonate itself is not the primary factor for viability reduction. Based on Northern analysis of taxadiene synthase mRNA from both elicited and nonelicited T. cuspidata P991, methyl jasmonate directly induces the production of this enzyme, which is the first committed step in the biosynthetic pathway for Taxol. As a result, both viability reduction and growth reduction appear related to a high production level of Taxol (and related taxanes) upon methyl jasmonate elicitation, rather than to the direct effect of methyl jasmonate.  相似文献   

6.
J. Luo  L. Liu  C.D. Wu 《Biotechnology letters》2001,23(16):1345-1348
Addition of 5 mg abscisic acid l–1 after 12 days' growth of Taxus chinensis suspension culture gave the greatest paclitaxel accumulation at 11 mg l–1, which was almost 5 times that of the control culture. The highest paclitaxel production, 18 mg l–1, was obtained using 5 mg abscisic acid l–1 and 20 mg methyl jasmonate l–1.  相似文献   

7.
Inoculum size (1.5-6.0g dry weight/l) significantly affected cell growth and accumulation of intracellular and extracellular taxol in Taxus chinensis. A shorter cultivation time and a higher biomass productivity were achieved using inoculum size of 6.0g DW/l. Both the intracellular content and total production of taxol were increased almost 30% with an increase of inoculum size from 1.5 to 3.0g DW/l, while an even higher inoculum size decreased taxol formation. The extracellular taxol concentration was relatively higher (0.091mg/l) at low inoculum sizes of 1.5 and 2.0g DW/l; and in various cases it was less than 25% of the total amount of taxol produced.  相似文献   

8.
Cell suspension cultures ofTaxus chinensis, with 20, 40 and 100 mg fungal elicitor l–1 from Aspergillus niger, underwent rapid cell death after 24 h, which was about 2, 3.7 and 5-fold of that of the control. At the same time, Taxol production was increased, respectively, to about 5, 8 and 3-fold of that of the control. Inhibition of phenolics biosynthesis resulted in a 150% increase in cell death but a 54% decrease in Taxol production compared with 40 mg elicitor l–1 alone. O2-free N2 inhibited cell death but had little effect on Taxol production as induced by 40 mg fungal elicitor l–1.  相似文献   

9.
10.
Cell suspension cultures of Taxus chinensis, supplemented with 25 g sucrose l–1, produced 11 mg cephalomanine l–1, 21 g biomass l–1 and 19 nkat geranylgeranyl diphosphate (GGPP) synthase activity g protein–1. Supplementation of the cultures with 100 M methyl jasmonate (MJA) produced 17 mg cephalomanine l–1, 6 g biomass l–1 and 78 nkat GGPP synthase activity g protein–1. Addition of sucrose and MJA together produced 24 mg cephalomanine l–1, 18 g biomass l–1 and 55 nkat GGPP synthase activity g protein–1.  相似文献   

11.
Cells from suspension cultures of Taxus cuspidata were extracted with pentane as a source of relatively non-polar taxoids. Of the 13 taxoids identified in this fraction, eight were oxygenated at C-14 and two had not been previously described. These taxoids, along with existing taxoid standards, were employed to profile the metabolites of Taxus x media cv. Hicksii cell suspension cultures induced with methyl jasmonate to produce paclitaxel (Taxol). The majority of the taxoid metabolites produced in these induced cultures were oxygenated at C-13, and not C-14.  相似文献   

12.
Summary The addition of cell extracts and cultures filtrate of Pencillium minioluteum, Botrytis cinerea, Verticillium dahliae, and Gilocladium deliqucescens on the tenth day after transferring Taxus sp. (RO1-M28) cell suspensions into an induction medium, further improved the production of Taxol and total taxanes. Arachidonic acid (1mg/L) addition at the time of inoculation increased Taxol production by 150%. Oxidative stress induction and copper sulphate or sodium orthovanadate addition had no effect on Taxol production. Three categories of elicitors; those specifically stimulating Taxol production, those specifically stimulating the producion of other taxanes, and those stimulating taxane production uniformly, could be identified. The biosynthetic site of action of these elicitors is currently not known.
  相似文献   

13.
Exposure to ozone induced a rapid increase in the levels of the phytohormone abscisic acid (ABA) and sequentially followed by the enhancement of Taxol production in suspension cell cultures of Taxus chinensis. The observed increases in ABA and Taxol were dependent on the concentration of ozone applied to T. chinensis cell cultures. To examine the role of ABA in ozone‐induced Taxol production, we pretreated the cells with ABA biosynthesis inhibitor fluridone to abolish ozone‐triggered ABA generation and assayed the effect of fluridone on ozone‐induced Taxol production. The results showed that pretreatment of the cells with fluridone not only suppressed the ozone‐triggered ABA generation but also blocked the ozone‐induced Taxol production. Moreover, our data indicate that the effect of ABA on Taxol production of T. chinensis cell cultures is dose‐dependent. Interestingly, the suppression of fluridone on ozone‐induced Taxol production was reversed by exogenous application of low dose of ABA, although treatment of low dose ABA alone had no effect on Taxol production of the cells. Together, the data indicated that ozone was an efficient elicitor for improving Taxol production of plant cell cultures. Furthermore, we demonstrated that ABA played critical roles in ozone‐induced Taxol production of T. chinensis suspension cell cultures. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

14.
The influences of salicylic acid (SA) on taxol production and isopentenyl pyrophosphate (IPP) biosynthesis pathways in suspension cultures of Taxus chinensis var. mairei were investigated by adding SA and mevastatin (MVS), a highly specific inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase in the mevalonate pathway for IPP biosynthesis, into the culture systems. The cell death and taxol production were induced upon the introduction of SA, and 20mg/l was proved to be the optimal SA concentration in terms of the less damage to Taxus cells and marked activation of phenylalanine ammonia lyase (PAL). In the coexistence of SA (20mg/l) and MVS (100 nmol/l), the taxol content (1.626 mg/g dry wt) was higher than that (0.252 mg/g dry wt) of the MVS-treated system but almost equal to that (1.581 mg/g dry wt) of the SA-treated system. It is thus inferred that the activated non-mevalonate pathway should be responsible for the formation of IPP in taxol biosynthesis in the presence of SA.  相似文献   

15.
The trivalent ion of a rare earth element, lanthanum, was tested for elicitor-like effects on taxol production in suspension cultures of four different Taxus spp cells. In T. yunnanensis cell cultures, the lanthanum ion at concentrations from 1.15 to 23.0 microM stimulated taxol production. The lanthanum ion also promoted taxol excretion by the T. yunnanensis cells considerably. The maximum stimulation of taxol production was achieved by the addition of 5.8 microM La3+ to the culture during mid-log growth phase, increasing the volumetric taxol yield by nearly threefold, from 2.61+/-0.37 to 9.89+/-1.92 mg l(-1) over a 28 day culture period. At higher concentrations, i.e. 23.1 and 46.2 microM, however, the lanthanum ion caused significant growth inhibition. For the other three Taxus cell lines, namely an embryo and a leave cell of T. chinensis and a stem cell of T. chinensis marv, the addition of lanthanum ion to the culture only had a significant effect on taxol production by the T. chinensis marv stem cells, increasing the volumetric yield by about threefold to 4.69+/-0.76 mg l(-1). These results suggest that lanthanum has elicitor-like effects on secondary metabolite synthesis of plant cell cultures.  相似文献   

16.
Dedifferentiated Taxus media cell cultures presenting the same genetic characteristics as the parent culture were established from transformed roots. Two transformed cell lines were studied: Rol C, carrying the T‐DNA of A. rhizogenes 9,402 and TXS, carrying both the T‐DNA of A. rhizogenes and the txs transgene of T. baccata under the control of the 35S CaMV promoter. In the second part of a previously optimized two‐stage system, the transformed cell lines were cultured in a production medium supplemented with the elicitor methyl jasmonate. Taxane production in the transformed cultures was compared with an untransformed T. media cell line cultured in the same conditions. The highest taxane production was observed in the TXS cell line when cultured in the optimized production medium with methyl jasmonate, being 265% greater than in the untransformed control and 170% greater than in the Rol C cell line. However, txs expression and the activity of the enzyme taxadiene synthase in the TXS cells were lower than in the line carrying only the rol genes (Rol C). It is also noteworthy that the taxane production as well as the txs gene expression and TXS activity in all the cell lines, both transformed and untransformed, were clearly dependent on the elicitor action. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
红豆杉细胞培养生产紫杉醇产量稳定性的探讨   总被引:2,自引:1,他引:1  
通过磷酸盐双饥饿和秋水仙碱这两种经典的同步化方法处理悬浮培养的红豆杉细胞 ,以实现培养物的均一性 ,并比较了同步化与非同步化细胞及不同同步化方法处理的细胞紫杉醇产量。结果表明 ,不同同步化方法处理的细胞紫杉醇产量有差异 :秋水仙碱同步处理处于中期的细胞紫杉醇产量高于非同步化细胞 ,而磷酸盐双饥饿同步处理处于间期的细胞紫杉醇产量则相反。这表明紫杉醇产量与培养物的均一性有关 ,且与细胞同步的周期时相有关 ,采用同步化方法来选择合适的细胞周期时相有利于紫杉醇产量的稳定 ,通过比较不同同步化方法处理对细胞生物量和 POD活性的影响进一步探讨紫杉醇产量产生差异的原因  相似文献   

18.
Callus was induced from Taxus baccata cv. Repandens Parsons ex Rehd., T. brevifolia Nutt., T. cuspidata Sieb. & Zucc., and T. x media cvs. Hicksii and Densiformis Rehd. using different concentrations of 2,4-d-(2,4-dichlorophenoxyacetic acid), IBA (indole-3-butyric acid), or NAA -naphthalene acetic acid in combination with kinetin. All cultures grew slowly following the first subculture, and a majority turned brown and ceased growth within the next six to twelve months. The callus cultures which lived, continued to grow very slowly for one to two years before the growth rate improved. Initiation of roots and shoot primordia-like structures occurred on some cultures maintained in the dark, and 16 h light/8 h dark, respectively. A fast-growing, habituated callus line (CR-1) derived from T. x media Rehd. cv. Hicksii was established from callus initiated in 1986. Supplementing the medium with casein hydrolysate and both fructose and glucose enhanced the growth rate. A great deal of heterogeneity was found among and within the callus, with respect to the amount of taxol produced. The callus exhibited levels of taxol ranging from 0.1 to 13.1 mg kg-1 (0.0001 to 0.0131%) on a dry weight basis. Overall, the older brown-colored callus produced more taxol than the younger pale yellow-colored callus. The presence of taxol in callus samples was established by high performance liquid chromatography, its biological activity confirmed by a microtubule-stabilizing bioassay and its structure confirmed using one-and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - NAA -naphthaleneacetic acid - kinetin 6-furfurylaminopurine - 2iP 6-(,-dimethylallylamino)purine  相似文献   

19.
20.
中国红豆杉悬浮培养细胞的超低温保存   总被引:3,自引:0,他引:3  
对中国红豆杉悬浮细胞超低温保存中几个主要因素进行多方面对比研究。结果表明,取培养16d的细胞进行超低温保存效果最好,10%DMSO+8%葡萄糖作为冰冻保护剂对冷冻细胞起到最佳的保护效果;较好的降温程序是在0℃中预处理30min后移入-20℃中停留180min,然后转入-70℃中停留30min,最后投入-196℃液氮中保存。该实验还对保存后细胞的恢复性生长进行了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号