首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To determine the relationship between the species richness of woody plants and that of mammals after accounting for the effect of environmental variables. Location Southern Africa, including Namibia, South Africa, Lesotho, Swaziland, Botswana, Zimbabwe, and part of Mozambique. Methods We used a comprehensive dataset including the species richness of mammals and of woody plants and environmental variables for 118 quadrats (each of 25,000 km2) across southern Africa, and used structural equation models (SEMs) and spatial regressions to examine the relationship between the species richness of woody plants and of mammal trophic guilds (herbivores, insectivores, carni/omnivores) and habitat guilds (aquatic/fossorial, ground‐living, climbers, aerial), after controlling for environment. We compared the results of SEMs with those of single‐predictor regressions (without controlling for environment) and of spatial regressions (controlling for both environment and residual spatial autocorrelation). Results The geographical variation of mammal species richness in southern Africa was strongly and positively related to that of woody plant species richness, and this relationship held for most mammal guilds even when the influence of environment and spatial autocorrelation had been accounted for. However, the effect of woody plant species richness on the richness of aquatic/fossorial species almost disappeared after controlling for environment, suggesting that the congruence in species richness patterns between these two groups results from similar responses to the same environmental variables. For many mammal guilds, the relative role of environmental predictors as measured by standardized partial regression coefficients changed depending on whether non‐spatial single‐predictor regressions, non‐spatial SEMs, or spatial regressions were used. Main conclusions Woody plants are important determinants of the species richness of most mammal guilds in southern Africa, even when controlling for environment and residual spatial autocorrelation. Environmental correlates with animal species richness as measured by simple correlations or single‐predictor regressions might not always reflect direct effects; they might, at least to some degree, result from indirect effects via woody plants. Interpretations of the strength of the effect of environmental variables on mammal species richness in southern Africa depend largely on whether spatial or non‐spatial models are used. We therefore stress the need for caution when interpreting environmental ‘effects’ on broad‐scale patterns of species richness if spatial and non‐spatial methods yield contrasting results.  相似文献   

2.
3.
The management of multi-functional landscapes warrants better knowledge of environment-richness associations at varying disturbance levels and habitat gradients. Intensive land-use patterns for agricultural purposes lead to fragmentation of natural habitat resulting in biodiversity loss that can be measured using landscape metrics to assess mammalian richness. Since carnivores and herbivores are likely to show different responses to disturbance, we calculated carnivore, non-carnivore, and total mammal species richness from camera surveys using a first order Jackknife Estimator. Richness was compared along a habitat gradient comprising coastal forest, Acacia thicket, and highland in KwaZulu-Natal, South Africa. We used standardized OLS regression models to identify climatic and disturbance variables, and landscape metrics as predictors of species richness. The estimated total and non-carnivore species richness were highest in coastal forest, while carnivore species richness was highest in highland followed by coastal forest and Acacia thicket. Average monthly maximum temperature was a significant predictor of all richness groups, and precipitation of the wettest month and isothermality determined total and non-carnivore species richness, respectively. These climatic variables possibly limit species distribution because of physiological tolerance of the species. Total mammal richness was determined by mean shape (+) and habitat division (−) while diversity (+) and patch richness (−) explained carnivore species richness. Mean shape index (+) influenced non-carnivore richness. However, habitat division and patch richness negatively influenced total mammal richness. Though habitat patch size and contiguity had a weak positive prediction, these metrics demonstrated the importance of habitat connectivity for maintaining mammal richness. The identification of these climatic and landscape patterns is important to facilitate future landscape management for mammal conservation in forest-mosaics.  相似文献   

4.
Understanding the species diversity patterns along elevational gradients is critical for biodiversity conservation in mountainous regions. We examined the elevational patterns of species richness and turnover, and evaluated the effects of spatial and environmental factors on nonvolant small mammals (hereafter “small mammal”) predicted a priori by alternative hypotheses (mid‐domain effect [MDE], species–area relationship [SAR], energy, environmental stability, and habitat complexity]) proposed to explain the variation of diversity. We designed a standardized sampling scheme to trap small mammals at ten elevational bands across the entire elevational gradient on Yulong Mountain, southwest China. A total of 1,808 small mammals representing 23 species were trapped. We observed the hump‐shaped distribution pattern of the overall species richness along elevational gradient. Insectivores, rodents, large‐ranged species, and endemic species richness showed the general hump‐shaped pattern but peaked at different elevations, whereas the small‐ranged species and endemic species favored the decreasing richness pattern. The MDE and the energy hypothesis were supported, whereas little support was found for the SAR, the environmental stability hypothesis, and the habitat complexity. However, the primary driver(s) for richness patterns differed among the partitioning groups, with NDVI (the normalized difference vegetation index) and MDE being the most important variables for the total richness pattern. Species turnover for all small mammal groups increased with elevation, and it supported a decrease in community similarity with elevational distance. Our results emphasized for increased conservation efforts in the higher elevation regions of the Yulong Mountain.  相似文献   

5.
The biodiversity of non‐volant small mammals along an extensive subtropical elevational gradient was studied for the first time on Gongga Mountain, the highest mountain in Hengduan Mountain ranges in China, located in one of the 25 global biodiversity hotspots. Non‐volant small mammals were replicate sampled in two seasons at eight sampling sites between 1000 and 4200 m elevation on the eastern slope of Gongga Mountain. In all, 726 individual small mammals representing 25 species were documented in 28 800 trap nights. The species richness pattern for non‐volant small mammals along the elevational gradients was hump‐shaped with highest richness at mid‐elevations. However, different richness patterns emerged between endemic and non‐endemic species, between larger‐ranged and smaller‐ranged species and between rodents and insectivores. Temperature, precipitation, plant species richness and geometric constraints (mid‐ domain effect) were most significant in explaining species richness patterns. Based on the analysis of simple ordinary least squares (OLS) and stepwise multiple regressions, the overall richness pattern, as well as the pattern of insectivores, endemic species and larger‐ranged species showed strong correlation with geometric constraint predictions. However, non‐endemic species richness was more strongly correlated with temperature, while rodent richness was correlated with plant species richness. Our study shows that no single key factor can explain all richness patterns of non‐volant small mammals. We need to be cautious in summarizing a general richness pattern of large species groups (e.g. small mammals or mammals) from species in smaller groups having different ecological distributions and life histories. Elevational richness patterns and their driving factors for small mammals are more likely dependent on what kind of species we study.  相似文献   

6.

Aim

The African Guineo-Congolian (GC) region is a global biodiversity hotspot with high species endemism, bioclimatic heterogeneity, complex landscape features, and multiple biogeographic barriers. Bioclimatic and geographic variables influence global patterns of species richness and endemism, but their relative importance varies across taxa and regions and is poorly understood for many faunas. Here, we test the hypothesis that turnover in endemic amphibians of the GC biodiversity hotspot is influenced mainly by the geographic distance between grid cells and secondarily by rainfall- and temperature-related variables.

Location

West and Central Africa.

Major Taxa Studied

Amphibians.

Methods

We compiled species-occurrence records via field sampling, online databases, and taxonomic literature. Our study used 1205 unique georeferenced records of 222 amphibian species endemic to the GC region. Patterns of species richness were mapped onto a grid with a spatial resolution of 0.5° × 0.5°. We estimated weighted endemism and tested whether endemism was higher than the expected species richness (randomization test). We quantified species turnover using generalized dissimilarity modelling to evaluate the processes underlying observed patterns of species richness in GC endemic amphibians. We explored bioregionalization using agglomerative hierarchical clustering based on the unweighted pair group method with arithmetic averages.

Results

We identified seven areas within the lower GC region – forests in Cameroon, Gabon, Southern Nigeria, Equatorial Guinea, Republic of Congo, Democratic Republic of Congo, and Cote d'Ivoire – as having high species richness of endemic amphibians. The randomization test returned four major areas of significant weighted endemism: Nigeria-Cameroon mountains, forest regions of the Democratic Republic of Congo, Cote d'Ivoire, and Ghana. Our analysis revealed five bioregions for amphibian endemism, four of which were located within the lower Guineo-Congolian forest. Species turnover was strongly related to the geographic distance between grid cells; contributing bioclimatic variables included precipitation of the warmest quarter, mean temperature of the wettest quarter, and mean diurnal temperature range.

Main Conclusions

Our results indicate that geographic distance between grid cells is the primary determinant of turnover in GC endemic amphibians, with secondary but significant effects of rainfall- and temperature-related variables. Our study identifies key areas of endemic amphibian richness that could be prioritized for conservation actions.  相似文献   

7.
Aim The aims of this paper are to: examine how current and historical ecological factors affect patterns of species richness, endemism and turnover in the Gulf of Guinea highlands, test theoretical biogeographical predictions and provide information for making informed conservation decisions. Location The Gulf of Guinea highlands in West Africa. Methods We used multivariate and matrix regression models, and cluster analyses to assess the influence of current climate and current and historical isolation on patterns of richness and turnover for montane birds across the highlands. We examined three groups of birds: montane species (including widespread species), montane endemics and endemic subspecies. We applied a complementarity‐based reserve selection algorithm using species richness with irreplaceability measures to identify areas of high conservation concern. Results Environmental factors influenced richness for all groups of birds (species, endemic species and subspecies). Areas with high and consistent annual rainfall showed the highest species and endemic richness. Species clusters for all groups of birds generally differentiated three major montane regions, which are topographically isolated. Multiple mantel tests identified these same regions for endemic species and subspecies. The influence of historical isolation varied by species group; distributions of endemic montane species and subspecies were more associated with historical breaks than were all montane species, which included widespread non‐endemic species. Main conclusions Our analyses indicated important geographical structure amongst the bird assemblages in the highlands and, therefore, conservation prioritization should include mountains from within the geographical subregions identified in these analyses because these regions may harbour evolutionarily distinct populations of birds.  相似文献   

8.
Aim To investigate the inter‐relationships between energy availability, species richness and human population density, particularly whether human population density influences the manner in which species richness responds to energy availability. Location British 10‐km grid cells. Methods Using regressions, we investigate how human population density varies with energy availability and the nature of relationships between the numbers of species, classified by abundance and threat categories, and human population density. We then assess whether the relationships between these species richness measures and energy availability are altered when accounting for human population density. We conduct analyses using both independent error models and ones that control for spatial autocorrelation. Results Human population density was strongly and positively correlated with energy availability. Total species richness, and that of unthreatened, threatened, common and moderately common species, increases in a positive decelerating manner with human density. When human population density was taken into account, these species groups exhibited similar species–energy relationships, but the slopes of these relationships were significantly reduced in independent error models and, in the case of total richness, in spatial models. Main conclusions Positive correlations between human density and species richness probably arise as both increase with energy availability. Our data are compatible with the suggestion that high human population densities reduce the rate at which species richness increases with energy availability, but additional research is required before causality can be confirmed.  相似文献   

9.
Aim To explore species richness patterns in liverworts and mosses along a central Himalayan altitudinal gradient in Nepal (100–5500 m a.s.l.) and to compare these patterns with patterns observed for ferns and flowering plants. We also evaluate the potential importance of Rapoport’s elevational rule in explaining the observed richness patterns for liverworts and mosses. Location Nepal, Central Himalaya. Methods We used published data on the altitudinal ranges of over 840 Nepalese mosses and liverworts to interpolate presence between maximum and minimum recorded elevations, thereby giving estimates of species richness for 100‐m altitudinal bands. These were compared with previously published patterns for ferns and flowering plants, derived in the same way. Rapoport’s elevational rule was assessed by correlation analyses and the statistical significance of the observed correlations was evaluated by Monte Carlo simulations. Results There are strong correlations between richness of the four groups of plants. A humped, unimodal relationship between species richness and altitude was observed for both liverworts and mosses, with maximum richness at 2800 m and 2500 m, respectively. These peaks contrast with the richness peak of ferns at 1900 m and of vascular plants, which have a plateau in species richness between 1500 and 2500 m. Endemic liverworts have their maximum richness at 3300 m, whereas non‐endemic liverworts show their maximum richness at 2700 m. The proportion of endemic species is highest at about 4250 m. There is no support from Nepalese mosses for Rapoport’s elevational rule. Despite a high correlation between altitude and elevational range for Nepalese liverworts, results from null simulation models suggest that no clear conclusions can be made about whether liverworts support Rapoport’s elevational rule. Main conclusions Different demands for climatic variables such as available energy and water may be the main reason for the differences between the observed patterns for the four plant groups. The mid‐domain effect may explain part of the observed pattern in moss and liverwort richness but it probably only works as a modifier of the main underlying relationship between climate and species richness.  相似文献   

10.
11.
Aim To integrate dietary knowledge and species distributions in order to examine the latitudinal, environmental, and biogeographical variation in the species richness of avian dietary guilds (herbivores, granivores, frugivores, nectarivores, aerial insectivores, terrestrial/arboreal insectivores, carnivores, scavengers, and omnivores). Location Global. Methods We used global breeding range maps and a comprehensive dietary database of all terrestrial bird species to calculate guild species richness for grid cells at 110 × 110 km resolution. We assessed congruence of guild species richness, quantified the steepness of latitudinal gradients and examined the covariation between species richness and climate, topography, habitat diversity and biogeographic history. We evaluated the potential of current environment and biogeographic history to explain global guild distribution and compare observed richness–environment relationships with those derived from random subsets of the global species pool. Results While most guilds (except herbivores and scavengers) showed strong congruence with overall bird richness, covariation in richness between guilds varied markedly. Guilds exhibited different peaks in species richness in geographical and multivariate environmental space, and observed richness–environment relationships mostly differed from random expectations. Latitudinal gradients in species richness were steepest for terrestrial/arboreal insectivores, intermediate for frugivores, granivores and carnivores, and shallower for all other guilds. Actual evapotranspiration emerged as the strongest climatic predictor for frugivores and insectivores, seasonality for nectarivores, and temperature for herbivores and scavengers (with opposite direction of temperature effect). Differences in species richness between biogeographic regions were strongest for frugivores and nectarivores and were evident for nectarivores, omnivores and scavengers when present‐day environment was statistically controlled for. Guild richness–environment relationships also varied between regions. Main conclusions Global associations of bird species richness with environmental and biogeographic variables show pronounced differences between guilds. Geographic patterns of bird diversity might thus result from several processes including evolutionary innovations in dietary preferences and environmental constraints on the distribution and diversification of food resources.  相似文献   

12.
We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism.  相似文献   

13.
Due to the current environmental crisis, many animal species face extinction problems. Amphibian populations have been affected by this crisis. Our goal is to study amphibian species diversity in Chiapas, which has 7.6% of the endemic amphibians in Mexico and 53 protected areas. Only 58% of the protected areas have management plans or information on their resident amphibians. We aim to determine the extent of protection provided by the network of natural areas for the conservation of amphibian species in the state and to discuss the effectiveness of this protection. Therefore, we compiled a georeferenced database of 112 amphibian species in Chiapas to create each distribution model. In addition, we carried out representativeness, beta diversity, and species richness analyses. As a result, we obtained a high degree of representativeness for the records and species distribution models. However, we found a decrease in the richness of amphibians involving 20% of total species, 13% of endemics, 18% threatened according to NOM-059, and 31% threatened according to IUCN between 1800 and 2020 and 1980–2020. We also identified two biodiversity hotspots in the Sierra Madre de Chiapas and the Northern Highlands physiographic regions. Finally, based on potential distributions, we found more endemic and threatened species outside protected natural areas than inside them. Our results give a broader picture of how amphibian richness is distributed in Chiapas. This information can help to prioritize conservation efforts toward those areas rich in threatened or endemic species, such as the Northern Mountains Hotspot we identified in northern Chiapas.  相似文献   

14.
We describe the elevational patterns of species richness and endemism of some important taxa in the Hengduan Mountains, southwest China. Species richness data came from publications, an online database, herbaria and field work. Species richness was estimated by rarefaction and interpolation. The Hengduan Mountains region was divided into a southern and northern subregion, and all species were assigned to four groups based on their distributional range within this region. The conditional autoregressive model (CAR) was used to relate species richness and explanatory variables. The elevational patterns of total, endemic and non-endemic species richness, at subregion and entire region scales, presented to be unimodal and peaked at similar elevations. Area size was strongly related with species richness, and was more powerful in explaining variation in species richness in the northern subregion than in the southern subregion. A single climatic variable (mean annual rainfall, potential evapotranspiration or moisture index) showed a weak relationship with the elevational pattern of species richness. Area and climatic variables together explained more than 67% of the variation in non-endemic richness, 53% in total richness, and 50% in endemic richness. There were three patterns of endemism at the generic level with increasing elevation: namely endemism increased, decreased, or peaked at middle elevations. All selected taxa have experienced rapid speciation and evolution within this region, which plays an important role in the uniform elevational patterns of total, endemic and non-endemic richness, and in the multiform elevational patterns of endemism. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Aim Species richness and endemic richness vary along elevation gradients, but not necessarily in the same way. This study tests if the maxima in gamma diversity for flowering plants and the endemic subset of these plants are coherent or not. Location The study was conducted in Nepal, between 1000 and 5000 m a.s.l. Methods We used published data on distribution and elevational ranges of the Nepalese flora to interpolate presence between maximum and minimum elevations. Correlation, regression and graphical analyses were used to evaluate the diversity pattern between 1000 and 5000 m a.s.l. Results The interval of maximum species endemic to Nepal or the Himalayas (3800–4200 m) is above the interval of maximum richness (1500–2500 m). The exact location of maximum species density is uncertain and its accuracy depends on ecologically sound estimates of area in the elevation zones. There is no positive statistically significant correlation between log‐area and richness (total or endemic). Total richness is positively correlated with log‐area‐adjusted, i.e. estimated area adjusted for the degree of topographic heterogeneity. The proportion of endemic species increases steadily from low to high elevations. The peak in endemism (c. 4000 m) corresponds to the start of a rapid decrease in species richness above 4000 m. This may relate to the last glacial maximum (equilibrium line at c. 4000 m) that penetrated down to 2500–3000 m. This dynamic hard boundary may have caused an increase in the extinction rate above 4000 m, and enhanced the probability of isolation and facilitated speciation of neoendemics, especially among genera with a high proportion of polyploids. Main conclusions The results reject the idea of corresponding maxima in endemic species and species richness in the lowlands tentatively deduced from Stevens’ elevational Rapoport effect. They confirm predictions based on hard boundary theory, but hard‐boundaries should be viewed as dynamic rather than static when broad‐scale biogeographical patterns with a historical component are being interpreted.  相似文献   

16.
Predicting patterns of plant species richness in megadiverse South Africa   总被引:4,自引:0,他引:4  
Using new tools (boosted regression trees) in predictive biogeography, with extensive spatial 23 distribution data for >19 000 species, we developed predictive models for South African plant species richness patterns. Further, biome level analysis explored possible functional determinants of country‐wide regional species richness. Finally, to test model reliability independently, we predicted potential alien invasive plant species richness with an independent dataset. Amongst the different hypotheses generally invoked to explain species 30 diversity (energy, favorableness, topographic heterogeneity, irregularity and seasonality), results revealed topographic heterogeneity as the most powerful single explanatory variable for indigenous South African plant species richness. Some biome‐specific responses were observed, i.e. two of the five analyzed biomes (Fynbos and Grassland) had richness best explained by the “species‐favorableness” hypothesis, but even in this case, topographic heterogeneity was also a primary predictor. This analysis, the largest conducted on an almost exhaustive species sample in a species‐rich region, demonstrates the preeminence of topographic heterogeneity in shaping the spatial pattern of regional plant species richness. Model reliability was confirmed by the considerable predictive power for alien invasive species richness. It thus appears that topographic heterogeneity controls species richness in two main ways: firstly, by providing an abundance of ecological niches in contemporary space (revealed by alien invasive species richness relationships) and secondly, by facilitating the persistence of ecological niches through time. The extraordinary richness of the South African Fynbos biome, a world‐renowned hotspot of biodiversity with the steepest environmental gradients in South Africa, may thus have arisen through both mechanisms. Comparisons with similar regions of the world outside South Africa are needed to confirm the generality of topographic heterogeneity and favorableness as predictors of plant richness.  相似文献   

17.
Predictable geographic patterns in the distribution of species richness, especially the latitudinal gradient, are intriguing because they suggest that if we knew what the controlling factors were we could predict species richness where empirical data is lacking (e.g. tropics). Based on analyses of the macro-scale distribution of woody plant species richness in Southern Africa, one controlling factor appears to be climate-based water-energy dynamics. Using the regression models of climate's relationship to species richness in Southern Africa, I was able to describe an Interim General Model (IGM) and to predict first-order macro-scale geographic variations in woody plant species richness for the continent of Africa, as well as elsewhere in the world—exemplified using South America, the United States and China.
In all cases, the geographic pattern of variation in species richness is in accord with geographic variations in vegetation (visual comparison with vegetation maps) and net primary productivity. What validation was possible (Africa and U.S.A.) suggests that the IGM provides 'reasonable' estimates for actual woody plant species richness where species richness is in relative equilibrium with climate. Areas of over- or under-prediction support the contention of earlier workers that edaphic, topographic, historical, and dispersal factors need to be considered in a more complete explanation for spatio-temporal variations in species richness.
In addition to providing a means for systematically estimating woody plant species richness where present-day empirical data is lacking, the Interim General Model may prove useful for modelling the effects of climate change (past/future) on species richness (and, by association, the vegetation).  相似文献   

18.
Rarity, commonness, and patterns of species richness: the mammals of Mexico   总被引:2,自引:0,他引:2  
Aim To determine whether rare or common species contribute most to overall patterns of spatial variation in extant species richness. Location Mexico. Methods Using data on the distribution of mammal species across Mexico at a quarter degree resolution, we ranked species from the most widespread to the most restricted (common‐to‐rare) within the study area, and from the most restricted to the most widespread (rare‐to‐common), and generated a sequence of patterns of species richness for increasing numbers of species. At each stage along both series of richness patterns, we correlated the species richness pattern for the subassemblage with that of the full assemblage. This allows comparison of subassemblages of the n most common with the n most rare species, in terms of how well they match the full assemblage richness pattern. Further analyses examined the effects on these patterns of correlation of the amount of raw information contained in the distributions of given numbers of rare and common species. Results For the mammals of Mexico the more widely distributed species contribute disproportionately to patterns of species richness compared with more restricted species, particularly for non‐volant species and endemic species. This is not simply a consequence of differences in the volumes of information contained in the distributions of rare and common species, with the disproportionate contribution of common species if anything being sharpened when these differences are taken into account. The pattern is most clearly demonstrated by endemic species, suggesting that the contribution of common species is clearest when the causes of rarity and commonness are limited to those genuinely resulting in narrow and widespread geographical ranges, respectively, rather than artificial (e.g. geopolitical) boundaries to the extents of study regions. Conclusions Perhaps surprisingly, an understanding of the determinants of overall patterns of species richness may gain most from consideration of why common species occur in some areas and are absent from others, rather than consideration of the distributions of rare species.  相似文献   

19.
Protected areas are generally regarded as essential for the long-term maintenance of biodiversity. Evidence for their effectiveness in this regard is, however, somewhat equivocal. Here, we document the relationship between the proportion of protected land and species richness in a region, both with and without taking spatial variation in environmental energy availability into account. Using the South African avifauna as a case study, we find that total and threatened species richness exhibit modest increases with the proportion of protected land. While the protected area network should be expanded, it is essential that conservation efforts also focus on maintaining biodiversity in the wider unprotected landscape that supports high species richness.  相似文献   

20.
Parasite species loads are expected to be higher in the tropics and higher parasite species richness to have cumulative effects on host physiology or demography. Despite being regularly assumed or predicted, empirical evidence on species–latitude patterns is scarce or contradictory and studies on the impacts of concomitant infections have mainly been done at host intra‐specific level. Broad generalizations are then very hard, if not spurious. By focusing on rodent species and their non‐eukaryotic microparasites (i.e. viruses and bacteria), we investigated, using a comparative approach, microparasite species richness across rodent species according to the latitude where they occur. We also explored the links between rodents’ reproductive traits, latitude and microparasite species richness. We find for the first time in rodents that virus species richness increases towards tropical latitudes, and that rodent litter size seems to decrease when microparasite species richness increases independently from the latitude. These results support the hypotheses that rodent species in the tropics effectively harbour higher parasite species loads, at least in terms of species richness for viruses, and that parasite species richness influences rodent life‐history traits. Although some other factors, such as seasonality, were not taken into account due the lack of data, our study stresses the idea that chronic microparasite infections may have detrimental effects on their rodent host reservoirs, notably by affecting litter size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号