首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of K+ depletion of Hep 2 cells on ion fluxes, internal pH, cell volume, and membrane potential was studied. The cells were depleted of K+ by incubation in K+-free buffer with or without a preceding exposure to hypotonic medium. Efflux of K+ in cells not exposed to hypotonic medium was inhibited by furosemide or by incubation in Na+-free medium, indicating that in this case at least part of the K+ efflux occurs by Na+/K+/Cl- cotransport. After exposure to hypotonic medium, K+ efflux was not inhibited by furosemide, whereas it was partly inhibited by 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS). Exposure to hypotonic medium induced acidification of the cytosol, apparently because of efflux of protons from intracellular acidic vesicles. When isotonicity was restored, a rebound alkalinization of the cytosol was induced, because of activation of the Na+/H+ antiporter. While hypotonic shock and a subsequent incubation in K+-free buffer rapidly depolarized the cells, depolarization occurred much more slowly when the K+ depletion was carried out by incubation in K+-free buffer alone. The cell volume was reduced in both cases. K+ depletion by either method strongly reduced the ability of the cells to accumulate 36Cl- by anion antiport, and K+-depleted cells were unable to increase the rate of 36Cl- uptake in response to alkalinization of the cytosol.  相似文献   

2.
3.
A new method of differential decondensation of mitotic chromosomes has been proposed by means of repeated treatment of live cells with 15% Hanks' balanced salt solution. The procedure of cell treatment includes three stages: the first hypotonic shock, cultivation in isotonic medium, and the second hypotonic shock. As a result, after a standard methanol-acetic acid fixation and Giemsa staining some discrete Giemsa-positive globules are revealed in mitotic chromosomes. Such globules are symmetrically arranged in axial regions of sister chromatids. The comparative analysis of marker chromosomes has revealed a topological conformity of these globules to G-bands of chromosomes. It has been shown that it is the first hypotonic shock that triggers induction of structural modification of chromatin in interphase nuclei and in mitotic chromosomes. Of interest is the fact that the effect of the first shock is prolonged in time and is realized during at least one cell cycle, with the normal structure of mitotic chromosomes being restored after S-phase of the successive cell cycle.  相似文献   

4.
目的 探究抗生素雾化暴露引起的呼吸道菌群缺失对小鼠呼吸道合胞病毒(RSV)感染的影响,为临床合理使用抗生素提供指导意见。 方法 32只BALB/c小鼠分为2组:雾化ddH2O对照组和雾化ABX组合抗生素组,处理6 d后,进行细菌16S rRNA基因PCR检测,构建呼吸道菌群缺失小鼠模型。上述2组组内再随机分为2小组,即PBS对照组(ddH2O+PBS,ABX+PBS)和RSV感染组(ddH2O+RSV,ABX+RSV),饲养至第14天。检测和分析各组小鼠支气管肺泡灌洗液(BALF)中的炎症细胞和相关细胞因子(TNFα、IL8、IL10及MCP1)的数量和水平,观察肺组织病理学状况及检测病毒载量。 结果 BALF中细菌DNA提取和16S rRNA基因PCR检测显示,雾化ABX组合抗生素处理能够有效地剔除呼吸道菌群。BALF中炎症细胞和相关细胞因子检测显示,ABX+RSV组炎症细胞总数明显增多(P2O+RSV组和ABX+RSV组小鼠肺部损伤明显加重(均P≤0.01),与ddH2O+RSV组相比较,ABX+RSV组的病毒载量明显升高(t=2.716 0,P=0.021 7)。 结论 雾化ABX组合抗生素不仅能够有效地剔除呼吸道菌群,而且明显增加了小鼠感染RSV的风险,导致呼吸道炎症加重,以及病毒载量升高。  相似文献   

5.
The chloride channel, ClC-2 is expressed ubiquitously and participates in multiple physiological processes. In particular, ClC-2 has been implicated in the regulation of neuronal chloride ion homeostasis and mutations in ClC-2 are associated with idiopathic generalized epilepsy. Despite the physiological and pathophysiological significance of this channel, its regulation remains incompletely understood. The functional expression of ClC-2 at the cell surface has been shown to be enhanced by depletion of cellular ATP, implicating its possible role in cellular energy sensing. In the present study, biochemical assays of cell surface expression suggest that this gain of function reflects, in part, an increase in channel number due to the reduction in ClC-2 internalization by endocytosis. Cell surface expression of the disease-causing mutant: G715E, thought to lack wild-type nucleotide binding affinity, is similarly affected, suggesting that ATP-depletion modifies the function of proteins in the endocytic pathway rather than ClC-2 directly. Using a combination of immunofluorescence and biochemical studies, we confirmed that ClC-2 is internalized via dynamin-dependent endocytosis and that the change in surface expression evoked by ATP depletion is partially mimicked by inhibition of dynamin function using a dynamin dominant-negative mutant (DynK44A). Furthermore, trafficking via the early endosomal compartment occurs in part through rab5-associated vesicles and recycling of ClC-2 to the cell surface occurs through a rab11 dependent pathway. In summary, we have determined that the internalization of ClC-2 by endocytosis is inhibited by metabolic stress, highlighting the importance for understanding the molecular mechanisms mediating the endosomal trafficking of this channel.  相似文献   

6.
The assembly of nucleolus-derived foci (NDF) in the cytoplasm of telophase cells is an early stage of nucleolus reassembly during mitosis. In current literature, significant attention is paid to the molecular composition of NDF and their participation in reassembly of the mature nucleolus. However, very little is known about mechanisms controlling the NDF formation. The authors have demonstrated for the first time that a reversible action of low ionic strength buffers (lypotonic shock treatment) on living mitotic human HeLa and green monkey CV1 cells triggers a premature assembly of NDF at metaphase. Like the true NDF, i. e., those assembled in telophase mitosis, NDF prematurally induced at metaphase contain RNA and proteins required for rRNA processing (fibrillarin, B23/nucliophosmin, C23/nucleolin), but lack UBF, an auxiliary factor of RNA polymerase I. We have assumed that a reversible action of hypotonic shock on metaphase cells may result in temporal increase in intracellular [Ca2+](i) that, in its turn, may induce a premature assembly of NDF under isotonic conditions. The structural integrity of the mitotic spindle apparently plays an essential role in the response of metaphase cells to hypotonic shock treatments.  相似文献   

7.
Receptor-mediated endocytosis of tissue-type plasminogen activator (t-PA) was characterized with the human hepatoma cell line Hep G2. At 4 degrees C binding of 125I-t-PA to Hep G2 cells is rapid, specific, saturable, and reflective of a homogeneous population of 76,000 high-affinity surface sites per cell (Kd = 3.7 nM). The kinetics of 125I-t-PA binding to its receptor are characterized by rate constants for association (k1 = 1.2 x 10(6) min-1 M-1) and dissociation (k-1 = 0.001 min-1). A specific glycosylation pattern does not appear to be required for binding. Binding does not appear to be mediated by other recognized hepatic receptor systems. At 37 degrees C a single cohort of bound 125I-t-PA molecules disappears rapidly from the cell surface. Ligand then accumulates intracellularly. Thereafter, the intracellular concentration of ligand declines simultaneously with the release of ligand degradation products into the media. In the continued presence of 125I-t-PA at 37 degrees C the concentration of cell-associated ligand plateaus after 30 min with the concomitant appearance of low molecular weight 125I-labeled fragments in the media. Cumulative degradation then increases linearly with time. Under steady state conditions half-maximal ligand uptake and degradation is 26.6 nM and maximal rate of catabolism is 1.2 pmol/10(6) cells/h. At saturating ligand concentrations uptake and degradation by Hep G2 cells continue linearly for at least 6 h even in the absence of protein synthesis. During this period the cumulative ligand uptake exceeds the total cellular capacity of binding sites, consistent with receptor recycling. We conclude that t-PA clearance in human Hep G2 cells involves ligand binding, uptake, and degradation mediated by a novel high-capacity, high-affinity specific receptor system.  相似文献   

8.
Apoptosis in HeLa Hep2 cells is induced by low-dose,low-dose-rate radiation   总被引:5,自引:0,他引:5  
Radioimmunotherapy with radiolabeled antibodies may cause inhibition of the growth of epithelial tumors, despite low total radiation doses and comparatively low radiosensitivity of epithelial tumor cells. The induction of apoptosis by low-dose radiation, such as delivered in radioimmunotherapy, was investigated in vitro in human HeLa Hep2 carcinoma cells. The cultured cells were exposed to defined radiation doses from a (60)Co radiation therapy source. The radiation source delivered 0.80 +/- 0.032 (mean +/- SD) Gy/min and the cells were given total doses of 1, 2, 5, 10 and 15 Gy. Using fluorescein-labeled Annexin V, followed by flow cytometry and DNA ladder analysis, apoptotic cells were detected and quantified. Radiation doses below 2 Gy did not cause any significant increase in apoptosis. Compared to control cells, apoptosis was pronounced after 5-10 Gy irradiation and was correlated to the radiation dose, with up to 42 +/- 3.5% of the cells examined displaying apoptosis. Clonogenic assays confirmed significantly decreased viability of the cells in the interval 2 to 10 Gy with low-dose-rate radiation, 60 +/- 2% compared to 2 +/- 2%. Lethal effects on the tumor cells were also evaluated by an assay of the cytotoxic effects of the release of (51)Cr. Significant cytotoxicity, with up to 64 +/- 6% dead cells, was observed at 5 Gy. Similar results were obtained when the dose rate was reduced to 0.072 +/- 0.003 Gy/min (mean +/- SD). In the case of the (137)Cs source, the dose rate could be reduced to 0.045 Gy/h, a level comparable to radioimmunotherapy, which induced significant apoptosis, and was most pronounced at 72-168 h postirradiation. It can be concluded that in vitro low-dose and low-dose-rate radiation induces apoptosis in epithelial HeLa Hep2 cells and thus may explain a mechanism by which pronounced inhibition of growth of HeLa Hep2 tumors at doses used in radioimmunotherapy has been obtained previously.  相似文献   

9.
The effect of hypotonic shock on cultured pavement gill cells from freshwater (FW)- and seawater (SW)-adapted trout was investigated. Exposure to 2/3rd strength Ringer solution produced an increase in cell volume followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also induced a biphasic increase in cytosolic Ca(2+) with an initial peak followed by a sustained plateau. Absence of external Ca(2+) did not modify cell volume under isotonic conditions, but inhibited RVD after hypotonic shock. [Ca(2+)](i) response to hypotonicity was also partially inhibited in Ca-free bathing solutions. Similar results were obtained whether using cultured gill cells prepared from FW or SW fishes. When comparing freshly isolated cells with cultured gill cells, a similar Ca(2+) signalling response to hypotonic shock was observed regardless of the presence or absence of Ca(2+) in the solution. In conclusion, gill pavement cells in primary culture are able to regulate cell volume after a cell swelling and express a RVD response associated with an intracellular calcium increase. A similar response to a hypotonic shock was recorded for cultured gill cells collected from FW and SW trout. Finally, we showed that calcium responses were physiologically relevant as comparable results were observed with freshly isolated cells exposed to hypoosmotic shock.  相似文献   

10.
A decrease in the osmolarity of incubation medium is accompanied by calcium influx in neuronal presynaptic endings. We studied the influence of Ca2+ on exocytosis induced by hypotonic shock using the hydrophilic fluorescent dye acridine orange and the hydrophobic fluorescent dye FM2-10. It was shown using acridine orange that lowering of osmolarity to 230 mOsm/l induces exocytosis both in calcium-containing and calcium-free medium. By contrast, we were able to demonstrate calcium-dependence of exocytosis using styryl dye FM2-10. Lowering of osmolarity leads to increase of [3H]D-aspartate and [3H]GABA release in calcium-free medium. Addition of calcium inhibits hypotonic-induced neurotransmitter release. Decreasing of NaCl concentration to 92 mM in isotonic medium is able to induce d-aspartate and GABA release. Thus, our data suggest that hypotonic swelling induces calcium-independent exocytosis possibly by a "kiss and run" mechanism. Calcium influx mediated by stretch channels is able to provoke full fusion between plasma membrane and synaptic vesicles. [3H]D-aspartate and [3H]GABA released by hypotonic shock is determined by sodium lowering rather than by osmolarity decreasing itself.  相似文献   

11.
When Vero cells were depleted of potassium, the cells were protected against diphtheria toxin. Potassium depletion of Vero cells strongly reduced the binding of the toxin to cell surface receptors. Likewise, potassium depleted L-cells were protected against pseudomonas toxin. Diphtheria toxin binding was completely restored upon addition of potassium to the cells. This restoration was not prevented by inhibition of protein synthesis by cycloheximide. When cells were depleted of potassium in the presence of metabolic inhibitors, and then treated with diphtheria toxin, protein synthesis was reduced to the same extent as in cells with normal intracellular level of potassium. The results indicate that potassium depletion of Vero cells reduces the ability of the cells to bind diphtheria toxin by an ATP requiring process, and that binding, endocytosis and transfer of diphtheria fragment A across the membrane may occur at low intracellular levels of potassium.  相似文献   

12.
Kuo PL  Chiang LC  Lin CC 《Life sciences》2002,72(1):23-34
Resveratrol, a phytoalexin found in many plants, has been reported to possess a wide range of pharmacological properties and is one of the promising chemopreventive agents for cancer. Here, we examined the antiproliferation effect of resveratrol in two human liver cancer cell lines, Hep G2 and Hep 3B. Our results showed that resveratrol inhibited cell growth in p53-positive Hep G2 cells only. This anticancer effect was a result of cellular apoptotic death induced by resveratrol via the p53-dependent pathway. Here we demonstrated that the resveratrol-treated cells were arrested in G1 phase and were associated with the increase of p21 expression. In addition, we also illustrated that the resveratrol-treated cells had enhanced Bax expression but they were not involved in Fas/APO-1 apoptotic signal pathway. In contrast, the p53-negative Hep 3B cells treated with resveratrol did not show the antiproliferation effect neither did they show significant changes in p21 nor Fas/APO-1 levels. In summary, our study demonstrated that the resveratrol effectively inhibited cell growth and induced programmed cell death in Hepatoma cells on a molecular basis. Furthermore, these results implied that resveratrol might also be a new potent chemopreventive drug candidate for liver cancer as it played an important role to trigger p53-mediated molecules involved in the mechanism of p53-dependent apoptotic signal pathway.  相似文献   

13.
Characterization of the carboxypeptidase N secreted by Hep G2 cells   总被引:1,自引:0,他引:1  
Human hepatoma (Hep G2) cells secrete nanogram quantities of carboxypeptidase enzymes which are capable of hydrolyzing COOH-terminal lysine and arginine residues. A carboxypeptidase with a neutral pH optimum (greater than pH 7.0) was partially purified from the conditioned medium and compared with pure plasma carboxypeptidase N. The two enzymes behaved in a similar manner on gel filtration (apparent Mr = 280,000), DE52 ion exchange chromatography, and concanavalin A-affinity chromatography and were indistinguishable enzymatically and immunologically. Immunoblots of the Hep G2 and plasma carboxypeptidase N before and following deglycosylation with peptide-N4-[N-acetyl-beta-glucosaminyl]asparagine amidase F revealed a similar, if not identical, multimeric structure. A second carboxypeptidase with a lower molecular weight and a pH optimum of 5.0 was also detected in the Hep G2 medium.  相似文献   

14.
Epidermal growth factor (EGF)-induced signaling was investigated in cells conditionally defective in clathrin-dependent endocytosis by overexpression of K44A dynamin in HeLa cells and potassium depletion in Hep2 cells. Overexpression of mutant dynamin disrupts high-affinity EGF-EGF receptor (EGFR) interaction (T. Ringerike, E. Stang, L. E. Johannessen, D. Sandnes, F. O. Levy, and I. H. Madshus, 1998, J. Biol. Chem. 273, 16639-16642). However, the EGFR substrates Shc and c-Cbl were as efficiently tyrosine phosphorylated in endocytosis-deficient HeLa cells exhibiting only low-affinity EGFRs as in HeLa cells with intact endocytosis and with both high- and low-affinity EGFRs. Both Raf and mitogen-activated protein kinase (MAPK) were activated to the same extent and with the same kinetics. HeLa cells distributed equally in the cell cycle regardless of EGFR internalization. Upon potassium depletion of Hep2 cells, EGF-induced EGFR endocytosis was inhibited. However, the EGFR and MAPK were efficiently activated by EGF in both the absence and the presence of clathrin-dependent endocytosis. The EGFR was weakly tyrosine phosphorylated by potassium depletion even in the absence of EGF, and this activation resulted in detectable activation of MAPK. Our results demonstrate that internalization of EGFR by clathrin-dependent endocytosis is not required for activation of MAPK.  相似文献   

15.
Curcumin, a yellow pigment from Curcuma longa, exhibits anti-inflammatory, antitumor, and antioxidative properties. Although its precise mode of action has not been elucidated so far, numerous studies have shown that curcumin may induce apoptosis in normal and cancer cells. Previously, we showed that in Jurkat cells curcumin induced nontypical apoptosis-like pathway, which was independent of mitochondria and caspase-3. Now we show that the inhibition of caspase-3 by curcumin, which is accompanied by attenuation of internucleosomal DNA fragmentation, may be due to elevation of glutathione, which increased in curcumin-treated cells to 130% of control. We have demonstrated that glutathione depletion does not itself induce apoptosis in Jurkat cells; though, it can release cytochrome c from mitochondria and caspase-3 from inhibition by curcumin, as shown by Western blot. The level of Bcl-2 protein was not affected by glutathione depletion even upon curcumin treatment. Altogether, our results show that in Jurkat cells curcumin prevents glutathione decrease, thus protecting cells against caspase-3 activation and oligonucleosomal DNA fragmentation. On the other hand, it induces nonclassical apoptosis via a still-unrecognized mechanism, which leads to chromatin degradation and high-molecular-weight DNA fragmentation.  相似文献   

16.
Many secretory proteins contain an amino-terminal propeptide extension which is removed prior to secretion. The point of cleavage is usually marked by a basic pair of amino acids containing arginine. Canavanine, an analogue of arginine, is incorporated into protein and has been shown to inhibit the proteolytic processing of several of these prosecretory proteins. The addition of 3 mM canavanine to Hep G2 cells incubated with L-[35S]methionine inhibited the secretion of 11 plasma proteins studied. Of the secretory proteins studied only albumin is thought to contain a propeptide, which is marked by a pair of arginine residues at its point of proteolytic processing. Canavanine had varying effects on the secretion of plasma proteins; ranging from a 43-53% inhibition of secretion of alpha 1 antitrypsin and alpha 1 anti-chrymotrypsin to nearly abolishing (93% inhibition) secretion of transferrin. Canavanine also caused most of the proteins studied to migrate slower on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Two of the canavanine-treated proteins (albumin and transferrin) which underwent marked changes in electrophoretic mobility were more sensitive than untreated proteins to proteolysis by Staphylococcus Aureus V8 proteinase. The slower electrophoretic migration and the greater sensitivity to proteolysis of these proteins may be attributed to marked structural changes caused by the incorporation of canavanine. This suggests that the inhibition of plasma protein secretion by canavanine is not only due to an inhibition of the processing of proteins but may be caused by structural distortions of the secretory proteins.  相似文献   

17.
ATP is released from the basolateral membrane of A6 epithelia in response to hypotonic treatment. This study addresses the problem of ATP diffusion through the permeable supports used to culture the cells. A theoretical analysis of a recently introduced experimental protocol is presented and a model of ATP diffusion through the compartments of the measuring system is proposed. The model provides the ATP profiles near the cell layer and in the measurement chamber. Comparison of results from computer simulations and experimental data showed that the permeable support introduces a marked delay for ATP diffusion, supporting the correlation of apparently time-separated events: the mobilization of Ca2+ from internal stores and release of ATP from the cell. The model is consistent with experimental data obtained with the luciferin–luciferase pulse protocol and provides an indirect proof of related processes like the closure and opening of the lateral interspace that occur after imposing the hyposmotic shock. The influence of the pore structure of the permeable support in modulating the measured release rates revealed by computer simulation is experimentally validated for two types of Anopore filters.  相似文献   

18.
Immunization with heat shock proteins (HSPs) induces Ag-specific CTL responses. The specificity of the immune response is based on peptides associated with HSPs. To investigate how exogenous HSP/peptide complexes gain access to the MHC class I-restricted Ag presentation pathway, we incubated the monocytic cell line P388D1 and the dendritic cell line D2SC/1 with gold-labeled HSPs gp96 and HSC70. We show that HSPs bind specifically to the surface of these APCs and are internalized spontaneously by receptor-mediated endocytosis, demonstrating the existence of specific receptors for HSPs on these cells. In addition, we observe colocalization of internalized HSPs and surface MHC class I molecules in early and late endosomal structures. These findings provide possible explanations for the immunogenicity of HSP/peptide complexes and for the transfer of HSP-associated peptides onto MHC class I molecules.  相似文献   

19.
Renal function has been studied by the clearance (cl.) method during hypotonic polyuria--four 15-min cl. periods--and successive antidiuresis--two 60-min cl. periods (A1, A2)--induced by lysine-8-vasopressin (LVP), 5 mU in bolus followed by infusion at a rate of 0.04 mU/min. The endogenous creatinine cl. (Cc) and the osmotic cls. (Cosm, CH2O) were determined by the usual methods as well as the absolute and fractional urinary excretions of water, sodium, chloride and potassium. The urinary concentrations of PGE2, 6-keto-PGF1 alpha and TxB2 were determined by the RIA method. This study protocol has been applied to 20 healthy women submitted to paired functional explorations in both the absence and presence of indomethacin (100 mg i.m.); the drug effects have been evaluated in both normal potassium balance (N2, n = 6) and in two groups of potassium depletion (KD) with potassium cumulative deficit of 160 +/- 43 (D2, n = 8) and 198 +/- 22 meq (D3, n = 6), respectively. As regards the early % effects of LVP, i.e. (A1-P)% of P (mean polyuria), the inhibition of prostanoid synthesis with indomethacin produced significant changes: 1) an enhanced reduction in renal chloride excretion in all experimental groups; 2) a reduction in renal sodium and chloride fractional excretions in both KD groups; 3) an enhanced antidiuretic effect in D3 only, i.e. in the experimental condition with inhibition of prostanoid renal synthesis present during the control study.  相似文献   

20.
Renal adaptation for potassium (K) conservation has been demonstrated in isolated perfused kidneys from rats within 3 days of K depletion and appears to be independent of aldosterone and sodium excretion. This study was designed to investigate whether the renal adaptation for K conservation is independent of ambient [K] and renal tissue levels of K and whether ouabain may have effects on K excretion, which are in contrast to the effects on K excretion in normal animals. In the first study, rats K depleted for 3 days received 2500 mu equiv. KCI intraperitoneally, while other K-depleted rats and a group of control diet animals received intraperitoneal H2O alone to determine whether simple restoration of K deficits would reverse the renal adaptation for K conservation. Intraperitoneal KCI increased plasma [K] and kidney tissue K significantly within 3 h in the K-repleted group compared with the K-depleted rats. Isolated Kidneys were perfused from the three groups of rats 3 h after intraperitoneal injection. Despite K repletion in vivo, perfused kidneys from the K-repleted group still had significantly decreased K excretion (1.28 +/- 0.085 mu equiv./min) compared with controls (2.05 +/- 0.291 mu equiv./min), and K excretion was still not different from the K-depleted group (0.57 +/- 0.134 mu equiv./min). However, fractional K excretion by the kidneys from K-repleted rats was increased above K-depleted kidneys (0.48 +/- 0.051 vs. 0.18 +/- 0.034, p less than 0.01). Despite the increased renal tissue K in K-repleted kidneys at the start of perfusion (285 +/- 5.1 vs. 257 +/- 5.4 mu equiv./g), by the end of the perfusion tissue K in perfused kidneys was identical in all three groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号