首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fluorescent pseudomonads that produce antibiotic 2,4-diacetylphloroglocinol (2,4-DAPG) are important group of PGRP that inhibit a broad spectrum of plant pathogenic fungi. Studying on genetic diversity of 2,4-diacetylphloroglucinol-producing fluorescent pseudomonads has been shown with special importance. The first step to investigate the genetic diversity of these bacteria is detecting of the genes required for the biosynthesis of this antibiotic. The objectives of the current study were detection of phlD gene within fluorescent pseudomonads by a PCR-based assay, and comparison of phenotypic and genotypic characteristics of fluorescent pseudomonads with proven biocontrol potential against some soil-borne phytopathogenic fungi. We used a collection of 47 fluorescent Pseudomonas spp. some with known biological control activity against Macrophomina phaseolina, Rhizoctonia solani, Phytophthora nicotianae var. parasitica, Pythium sp. and Fusarium sp. in vitro and the potential to produce known secondary metabolites such as, siderophore, HCN and protease. The results indicated that 66, 40.42, 63.82,48.94 and 27.65% of strains revealed antagonistic activity against R. solani, M. phaseolina, Pythium sp., P. nicotianae and Fusarium sp., respectively. Rhizoctonia solani recognized as the most vulnerable fungus. Among 47 strains, 76.59, 97.87 and 17% of strains produced protease, siderophore and HCN, respectively. We could detect phlD gene in strains P-5, P-32, P-47. Strain CHA0 was used as positive control for the detection this gene. Overall, there was no obvious link between the existence of phlD gene and inhibition of fungal growth or production of the antifungal metabolites in vitro. But in some strains such as CHA0 and P-5, we saw a link between the existence of phlD and antifungal activities. Studying on detection and diversity of phlD provides a fundamental knowledge for developing a rapid genetic screening system to identify a potential biocontrol strains.  相似文献   

2.
Antifungal activity of 275 strains belonging to 15 species of Pseudomonas was studied with using media containing no iron or supplemented with 100 micrograms/ml of FeCl3. 33 per cent of the cultures showed lower activity against phytopathogenic fungi in the presence of iron. Addition of this element did not influence the antifungal activity of phenazin and floroglucin derivatives isolated from Pseudomonas cultures. However, its addition markedly lowered the antifungal effect of some crude antibiotics and fluorescent pigments. A scheme for screening siderophore antibiotics with using Pseudomonas cultures is described.  相似文献   

3.
烟草根际铁载体产生菌G-229-21T的筛选、鉴定及拮抗机理   总被引:5,自引:0,他引:5  
[目的]从烟草根际筛选烟草疫霉[Phytophthora parasitica var.nicotianae(Breda de Hann)Tucker]拮抗菌,探索其拮抗机理.[方法]限铁(2.0 μmol/L FeCl3)蔗糖-天冬酰胺平板对峙法筛选烟草疫霉拮抗菌;刃天青(CAS)法检测其铁载体的产生及其对铁离子的亲和能力.结合形态、生理生化、16s rRNA序列同源性和系统发育分析及种特异性分子法对其进行鉴定.XAD-2吸附层析法提取其铁载体,分光光度法检测其铁载体类型.不同铁离子浓度下,比较其铁载体对烟草疫霉的抑制作用.[结果]我们筛选到一株限铁条件下烟草疫霉拮抗菌G-229-21T,该菌产生高亲和力铁载体,被初步鉴定为Pseudomonas mediterranea.该菌产生的羧酸型铁载体,在低铁条件下(0.16μmol/L~10μmol/L,FeCl3)对烟草疫霉的抑制率达92.3%以上,而在富铁条件下(100 μmol/L FeCl3)抑制率仅为2.0%.[结论]首次报道P. mediterranea G-229-21T产生高亲和力羧酸型铁载体,该铁载体在低铁条件下对烟草疫霉有显著的抑制作用.  相似文献   

4.
Thirty seven bacterial cultures isolated from soil samples obtained from different locations were tested for their antagonistic activity against some fungal pathogens, viz., Sclerotium rolfsii, Fusarium oxysporum and Rhizoctonia solani, causal agents of collar rot of sunflower, wilts and root rots, respectively. Among them, 5 bacterial strains, viz., A1 6 (Bacillus sphaericus), K1 24 (Pseudomonas fluorescens), M1 42 (Bacillus circulans), M1 66 (Bacillus brevis) and T1 22 (Bacillus brevis) showed positive antagonistic activity. M1 66 was the most effective in inhibiting mycelial growth of S. rolfsii in vitro followed by M1 42, T1 22, K1 24 and A1 6. Only one bacterial strain i.e. M1 42 exhibited antagonistic activity against F. oxysporum, and none of the bacterial strains gave positive activity against R. solani. Furthermore, antimicrobial activities of all the 5 strains were checked against different test organisms. These strains showed their extensive inhibition effect particularly against gram-positive test bacteria (Staphylococcus aureus and Bacillus subtilis) and the test fungal strain (Candida albicans). On the other hand, B. brevis M1 66 and B. brevis T1 22 strains had an inhibitory effect against gram positive and gram-negative test bacteria (Escherichia coli and Proteus vulgaris) as well as the test fungal strain.  相似文献   

5.
As a strategy to increase the penetration of antibiotic drugs through the outer membrane of gram-negative pathogens, facilitated transport through siderophore receptors has been frequently exploited. Hydroxamic acids, catechols, or very close isosteres of catechols, which are mimics of naturally occurring siderophores, have been used successfully as covalently linked escorting moieties, but a much wider diversity of iron binding motifs exists. This observation, coupled to the relative lack of specificity of siderophore receptors, prompted us to initiate a program to identify novel, noncatechol siderophoric structures. We screened over 300 compounds for their ability to (1) support growth in low iron medium of a Pseudomonas aeruginosa siderophore biosynthesis deletion mutant, or (2) compete with a bactericidal siderophore-antibiotic conjugate for siderophore receptor access. From these assays we identified a set of small molecules that fulfilled one or both of these criteria. We then synthesized these compounds with functional groups suitable for attachment to both monobactam and cephalosporin core structures. Siderophore-beta-lactam conjugates then were tested against a panel of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains. Although several of the resultant chimeric compounds had antimicrobial activity approaching that of ceftazidime, and most compounds demonstrated very potent activity against their cellular targets, only a single compound was obtained that had enhanced, siderophore-mediated antibacterial activity. Results with tonB mutants frequently showed increased rather than decreased susceptibilities. suggesting that multiple factors influenced the intracellular concentration of the drugs.  相似文献   

6.
Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.  相似文献   

7.
8.
Fluorescent rhizosphere Pseudomonas sp. strain NZ130 promotes plant growth, and may do so in part because of its production of a growth inhibitory factor that is active against phytopathogenic fungi. Analysis of the inhibitory factor that is active against the phytopathogen Pythium ultimum showed that its activity is antagonized at iron concentrations above 10 microM. The iron-antagonized inhibitor was separated from the fluorescent siderophore of this pseudomonad by gel filtration. Mutants that lacked either the iron-antagonized inhibitor or the fluorescent siderophore were isolated. Results of complementation analysis of these mutants by use of a cosmid library indicated that distinct DNA sequences are required for the production of each factor. Analysis of isogenic mutant strains showed that the genetic requirements for the production of the iron-antagonized inhibitor and the fluorescent siderophore are different, and that only the fluorescent siderophore is required for iron assimilation. Fusions of these same sequences to a beta-galactosidase gene were used to show that the regions required for the production of both the fluorescent siderophore and the iron-antagonized inhibitor were iron-regulated.  相似文献   

9.
Pseudomonas fluorescens 2-79 suppresses take-all, a major root disease of wheat caused by Gaeumannomyces graminis var. tritici. The bacteria produce an antibiotic, phenazine-1-carboxylic acid (PCA), and a fluorescent pyoverdin siderophore. Previous studies have established that PCA has an important role in the biological control of take-all but that antibiotic production does not account fully for the suppressiveness of the strain. To define the role of the pyoverdin siderophore more precisely, mutants deficient in production of the antibiotic, the siderophore, or both factors were constructed and compared with the parental strain for control of take-all on wheat roots. In all cases, strains that produced PCA were more suppressive than those that did not, and pyoverdin-deficient mutant derivatives controlled take-all as effectively as their respective fluorescent parental strains. Thus, the phenazine antibiotic was the dominant factor in disease suppression and the fluorescent siderophore had little or no role. The siderophore also was of minor importance in a second strain, P. fluorescens M4-80R, that does not produce PCA. Strains 2-79 and M4-80R both produced substances distinct from the pyoverdin siderophore that were responsible for fungal inhibition in vitro under iron limitation, but these substances also had, at most, a minor role in disease suppression in situ.  相似文献   

10.
Pseudomonas fluorescens 2-79 suppresses take-all, a major root disease of wheat caused by Gaeumannomyces graminis var. tritici. The bacteria produce an antibiotic, phenazine-1-carboxylic acid (PCA), and a fluorescent pyoverdin siderophore. Previous studies have established that PCA has an important role in the biological control of take-all but that antibiotic production does not account fully for the suppressiveness of the strain. To define the role of the pyoverdin siderophore more precisely, mutants deficient in production of the antibiotic, the siderophore, or both factors were constructed and compared with the parental strain for control of take-all on wheat roots. In all cases, strains that produced PCA were more suppressive than those that did not, and pyoverdin-deficient mutant derivatives controlled take-all as effectively as their respective fluorescent parental strains. Thus, the phenazine antibiotic was the dominant factor in disease suppression and the fluorescent siderophore had little or no role. The siderophore also was of minor importance in a second strain, P. fluorescens M4-80R, that does not produce PCA. Strains 2-79 and M4-80R both produced substances distinct from the pyoverdin siderophore that were responsible for fungal inhibition in vitro under iron limitation, but these substances also had, at most, a minor role in disease suppression in situ.  相似文献   

11.
A series of novel Schiff base derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3v showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC(50) of 4.3 μM. Docking simulation was performed to position compound 3v into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

12.
从大连不同地区的海泥样品中分离了2株具有广谱抗菌活性的小单胞菌。16S rDNA序列分析结果显示,2株小单胞菌均与Micromonospora aurantiaca DSM43813具有99%的相似性,但是这2株小单胞菌的培养特征和生理生化特性具有明显的差别。2株小单胞菌均在20℃下生长良好,而且能耐受6%的NaCl。这是有抗菌活性的Micromonospora aurantiaca菌株首次在我国大连地区海泥样品中得到分离。2株小单胞菌具有较好的抗菌活性,尤其是对白色假丝酵母和铜绿假单胞杆菌的活性,显示了进一步开发与应用的价值。  相似文献   

13.
A series of novel cinnamic acid secnidazole ester derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3n showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC?? of 2.5 μM. Docking simulation was performed to position compound 3n into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

14.
Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 72 bacterial isolates belonging to Azotobacter, fluorescent Pseudomonas, Mesorhizobium and Bacillus were isolated from different rhizospheric soil and plant root nodules in the vicinity of Aligarh. These test isolates were biochemically characterized. These isolates were screened in vitro for their plant growth promoting traits like production of indoleacetic acid (IAA), ammonia (NH(3)), hydrogen cyanide (HCN), siderophore, phosphate solubilization and antifungal activity. More than 80% of the isolates of Azotobacter, fluorescent Pseudomonas and Mesorhizobium ciceri produced IAA, whereas only 20% of Bacillus isolates was IAA producer. Solubilization of phosphate was commonly detected in the isolates of Bacillus (80%) followed by Azotobacter (74.47%), Pseudomonas (55.56%) and Mesorhizobium (16.67%). All test isolates could produce ammonia but none of the isolates hydrolyzed chitin. Siderophore production and antifungal activity of these isolates except Mesorhizobium were exhibited by 10-12.77% isolates. HCN production was more common trait of Pseudomonas (88.89%) and Bacillus (50%). On the basis of multiple plant growth promoting activities, eleven bacterial isolates (seven Azotobacter, three Pseudomonas and one Bacillus) were evaluated for their quantitative IAA production, and broad-spectrum (active against three test fungi) antifungal activity. Almost at all concentration of tryptophan (50-500 microg/ml), IAA production was highest in the Pseudomonas followed by Azotobacter and Bacillus isolates. Azotobacter isolates (AZT(3), AZT(13), AZT(23)), Pseudomonas (Ps(5)) and Bacillus (B(1)) showed broad-spectrum antifungal activity on Muller-Hinton medium against Aspergillus, one or more species of Fusarium and Rhizoctonia bataticola. Further evaluation of the isolates exhibiting multiple plant growth promoting (PGP) traits on soil-plant system is needed to uncover their efficacy as effective PGPR.  相似文献   

15.
In this study, among a collection of Ni resistant bacterial strains isolated from serpentine soil, two plant growth promoting bacteria (PGPB), Ps29C and Bm4C were selected based on their ability to utilize ACC as the sole N source and promote seedling growth in roll towel assay. The Ni resistant PGPB, Ps29C and Bm4C were characterized as Pseudomonas sp. and Bacillus megaterium, respectively, on the basis of their 16s rDNA sequences. Assessment of the parameters of plant growth promotion revealed the intrinsic ability of the strains for the production of IAA, siderophore and solubilization of insoluble phosphate. Further, the plant growth promoting activity of Ps29C and Bm4C on the Indian mustard (Brassica juncea) were assessed with different concentrations of Ni in soil. Inoculation of Ps29C or Bm4C promoted plant growth and protected the plant from Ni toxicity. However, the maximum growth was observed in the plants inoculated with strain Bm4C. Inoculation with Ps29C or Bm4C had little influence on the accumulation of Ni in root and shoot system, but produced a much larger aboveground biomass. The present observations showed that the strains Ps29C and Bm4C protect the plants against the inhibitory effects of nickel, probably due to the production of IAA, siderophore and solubilization of phosphate. The above results provided a new insight into the phytoremediation of Ni contaminated soil.  相似文献   

16.
The aim of the present study was to characterize the probiotic qualities of Bacillus isolates and study their siderophore prior to possible siderophoregenic probiotic application for iron nutrition in animals and humans. Bacillus strains were selectively isolated from dairy waste and mango pulp waste. Best two siderophore positive isolates, JHT3 and DET6 showed high homology with Bacillus megaterium (98%) and B. subtilis (99%), respectively, using partial 16S-rRNA sequencing and biochemical characterization. These isolates produced catecholate type of siderophore under iron stressed conditions and were screened for probiotic properties as per WHO and FAO guidelines. Spores of these strains showed excellent tolerance in partially simulated gastrointestinal tract conditions and exhibited antimicrobial activity against organisms such as Staphylococcus aureus, Micrococcus flavus and Escherichia coli. Importantly, these isolates were susceptible to the most of the antibiotics tested, in conflict that they would not donate resistance determinants if administered in the form of probiotic preparations.  相似文献   

17.
Gupta CP  Sharma A  Dubey RC  Maheshwari DK 《Cytobios》1999,99(392):183-189
A plant growth promotory bacterial strain, isolated from the potato rhizosphere, was characterized as Pseudomonas aeruginosa (GRC1). The isolate produced an hydroxamate type of siderophore after 48 h of incubation on tryptic soy medium under iron deficient conditions. The in vitro antifungal activity of P. aeruginosa was tested against two soil-borne plant pathogens, Macrophomina phaseolina and Fusarium oxysporum. The antagonistic behaviour of the isolate was tested by dual culture technique. The growth inhibition of M. phaseolina and F. oxysporum was 74.1% and 70.5%, respectively, after 5 days of incubation. The production of hydrocyanic acid and indole acetic acid was also recorded under normal growth conditions.  相似文献   

18.
Nonfluorescent highly virulent strains of Pseudomonas syringae pv. aptata isolated in different European countries and in Uruguay produce a nonfluorescent peptide siderophore, the production of which is iron repressed and specific to these strains. The amino acid composition of this siderophore is identical to that of the dominant fluorescent peptide siderophore produced by fluorescent P. syringae strains, and the molecular masses of the respective Fe(III) chelates are 1,177 and 1,175 atomic mass units. The unchelated nonfluorescent siderophore is converted into the fluorescent siderophore at pH 10, and colors and spectral characteristics of the unchelated siderophores and of the Fe(III)-chelates in acidic conditions are similar to those of dihydropyoverdins and pyoverdins, respectively. The nonfluorescent siderophore is used by fluorescent and nonfluorescent P. syringae strains. These results and additional mass spectrometry data strongly suggest the presence of a pyoverdin chromophore in the fluorescent siderophore and a dihydropyoverdin chromophore in the nonfluorescent siderophore, which are both ligated to a succinamide residue. When chelated, the siderophores behave differently from typical pyoverdins and dihydropyoverdins in neutral and alkaline conditions, apparently because of the ionization occurring around pH 4.5 of carboxylic acids present in beta-hydroxyaspartic acid residues of the peptide chains. These differences can be detected visually by pH-dependent changes of the chelate colors and spectrophotochemically. These characteristics and the electrophoretic behavior of the unchelated and chelated siderophores offer new tools to discriminate between saprophytic fluorescent Pseudomonas species and fluorescent P. syringae and P. viridiflava strains and to distinguish between the two siderovars in P. syringae pv. aptata.  相似文献   

19.
As an approach to understanding the molecular basis of the reduction in plant yield depression by root-colonizing Pseudomonas spp. and especially of the role of the bacterial cell surfaces in this process, we characterized 30 plant-root-colonizing Pseudomonas spp. with respect to siderophore production, antagonistic activity, plasmid content, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis patterns of their cell envelope proteins. The results showed that all strains produce hydroxamate-type siderophores which, because of the correlation with Fe3+ limitation, are thought to be the major factor responsible for antagonistic activity. Siderophore-negative mutants of two strains had a strongly decreased antagonistic activity. Five strains maintained their antagonistic activity under conditions of iron excess. Analysis of cell envelope protein patterns of cells grown in excess Fe3+ showed that most strains differed from each other, although two classes of similar or identical strains were found. In one case such a class was subdivided on the basis of the patterns of proteins derepressed by iron limitation. Small plasmids were not detected in any of the strains, and only one of the four tested strains contained a large plasmid. Therefore, it is unlikely that the Fe3+ uptake system of the antagonistic strains is usually plasmid encoded.  相似文献   

20.
In this study, an antagonistic bacterium against Fusarium oxysporum was identified and designated as Pseudomonas syringae strain BAF.1 on the basis of 16S rDNA sequence analysis and physiological-biochemical characteristics. It produced catechol-species siderophore at a molecular weight of 488.59 Da and a maximum amount of 55.27 μg/ml with glucose as a carbon source and asparagine as a nitrogen source at a C/N ratio of 10:1, 30°C and pH 7. The siderophore exhibited prominent antagonistic activity against Fusarium oxysporum with a maximum inhibition rate of 95.24% and had also suppressive effects on other kinds of 11 phytopathogenic fungi in the absence of FeCl3·6H2O. Spore germination was completely inhibited by 50 μl of the siderophorecontaining solution, and the ultrastructures of mycelia and spores were also considerably suppressed by siderophore treatment as established by electron microscopy observation. These results indicate that the siderophore produced by Pseudomonas syringae BAF.1 could be potentially used for biocontrol of pathogenic Fusarium oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号